mevol's picture
adding all relevant files for independent validation set
096c2f7
raw
history blame
No virus
73.5 kB
The O
Mechanism O
by O
Which O
Arabinoxylanases B-protein_type
Can O
Recognize O
Highly B-protein_state
Decorated I-protein_state
Xylans B-chemical
* O
The O
enzymatic O
degradation O
of O
plant B-taxonomy_domain
cell O
walls O
is O
an O
important O
biological O
process O
of O
increasing O
environmental O
and O
industrial O
significance O
. O
Xylan B-chemical
, O
a O
major O
component O
of O
the O
plant B-taxonomy_domain
cell O
wall O
, O
consists O
of O
a O
backbone O
of O
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
xylose I-chemical
( O
Xylp B-chemical
) O
units O
that O
are O
often O
decorated O
with O
arabinofuranose B-chemical
( O
Araf B-chemical
) O
side O
chains O
. O
A O
large O
penta B-protein_type
- I-protein_type
modular I-protein_type
enzyme I-protein_type
, O
CtXyl5A B-protein
, O
was O
shown O
previously O
to O
specifically O
target O
arabinoxylans B-chemical
. O
Here O
we O
report O
the O
crystal B-evidence
structure I-evidence
of O
the O
arabinoxylanase B-protein_type
and O
the O
enzyme O
in B-protein_state
complex I-protein_state
with I-protein_state
ligands B-chemical
. O
The O
data O
showed O
that O
four O
of O
the O
protein O
modules O
adopt O
a O
rigid O
structure O
, O
which O
stabilizes O
the O
catalytic B-structure_element
domain I-structure_element
. O
The O
C O
- O
terminal O
non B-structure_element
- I-structure_element
catalytic I-structure_element
carbohydrate I-structure_element
binding I-structure_element
module I-structure_element
could O
not O
be O
observed O
in O
the O
crystal B-evidence
structure I-evidence
, O
suggesting O
positional O
flexibility O
. O
The O
structure B-evidence
of O
the O
enzyme O
in B-protein_state
complex I-protein_state
with I-protein_state
Xylp B-chemical
- I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
Xylp I-chemical
- I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
Xylp I-chemical
-[ I-chemical
α I-chemical
- I-chemical
1 I-chemical
, I-chemical
3 I-chemical
- I-chemical
Araf I-chemical
]- I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
Xylp I-chemical
showed O
that O
the O
Araf B-chemical
decoration O
linked O
O3 O
to O
the O
xylose B-chemical
in O
the O
active B-site
site I-site
is O
located O
in O
the O
pocket B-site
(O
2 B-site
* I-site
subsite I-site
) O
that O
abuts O
onto O
the O
catalytic B-site
center I-site
. O
The O
B-site
2 I-site
* I-site
subsite I-site
can O
also O
bind O
to O
Xylp B-chemical
and O
Arap B-chemical
, O
explaining O
why O
the O
enzyme O
can O
utilize O
xylose B-chemical
and O
arabinose B-chemical
as O
specificity O
determinants O
. O
Alanine B-experimental_method
substitution I-experimental_method
of O
Glu68 B-residue_name_number
, O
Tyr92 B-residue_name_number
, O
or O
Asn139 B-residue_name_number
, O
which O
interact O
with O
arabinose B-chemical
and O
xylose B-chemical
side O
chains O
at O
the O
B-site
2 I-site
* I-site
subsite I-site
, O
abrogates O
catalytic O
activity O
. O
Distal O
to O
the O
active B-site
site I-site
, O
the O
xylan B-chemical
backbone O
makes O
limited O
apolar O
contacts O
with O
the O
enzyme O
, O
and O
the O
hydroxyls O
are O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
. O
This O
explains O
why O
CtXyl5A B-protein
is O
capable O
of O
hydrolyzing O
xylans B-chemical
that O
are O
extensively O
decorated O
and O
that O
are O
recalcitrant O
to O
classic O
endo B-protein_type
- I-protein_type
xylanase I-protein_type
attack O
. O
The O
plant B-taxonomy_domain
cell O
wall O
is O
an O
important O
biological O
substrate O
. O
This O
complex O
composite O
structure O
is O
depolymerized O
by O
microorganisms B-taxonomy_domain
that O
occupy O
important O
highly O
competitive O
ecological O
niches O
, O
whereas O
the O
process O
makes O
an O
important O
contribution O
to O
the O
carbon O
cycle O
. O
Given O
that O
the O
plant B-taxonomy_domain
cell O
wall O
is O
the O
most O
abundant O
source O
of O
renewable O
organic O
carbon O
on O
the O
planet O
, O
this O
macromolecular O
substrate O
has O
substantial O
industrial O
potential O
. O
An O
example O
of O
the O
chemical O
complexity O
of O
the O
plant B-taxonomy_domain
cell O
wall O
is O
provided O
by O
xylan B-chemical
, O
which O
is O
the O
major O
hemicellulosic O
component O
. O
This O
polysaccharide B-chemical
comprises O
a O
backbone O
of O
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
d I-chemical
- I-chemical
xylose I-chemical
residues O
in O
their O
pyranose B-chemical
configuration O
( O
Xylp B-chemical
) O
that O
are O
decorated O
at O
O2 O
with O
4 B-chemical
- I-chemical
O I-chemical
- I-chemical
methyl I-chemical
- I-chemical
d I-chemical
- I-chemical
glucuronic I-chemical
acid I-chemical
( O
GlcA B-chemical
) O
and O
at O
O2 O
and O
/ O
or O
O3 O
with O
α B-chemical
- I-chemical
l I-chemical
- I-chemical
arabinofuranose I-chemical
( O
Araf B-chemical
) O
residues O
, O
whereas O
the O
polysaccharide B-chemical
can O
also O
be O
extensively O
acetylated O
. O
In O
addition O
, O
the O
Araf B-chemical
side O
chain O
decorations O
can O
also O
be O
esterified O
to O
ferulic B-chemical
acid I-chemical
that O
, O
in O
some O
species O
, O
provide O
a O
chemical O
link O
between O
hemicellulose B-chemical
and O
lignin B-chemical
. O
The O
precise O
structure O
of O
xylans B-chemical
varies O
between O
plant B-taxonomy_domain
species O
, O
in O
particular O
in O
different O
tissues O
and O
during O
cellular O
differentiation O
. O
In O
specialized O
plant B-taxonomy_domain
tissues O
, O
such O
as O
the O
outer O
layer O
of O
cereal B-taxonomy_domain
grains O
, O
xylans B-chemical
are O
extremely O
complex O
, O
and O
side O
chains O
may O
comprise O
a O
range O
of O
other O
sugars B-chemical
including O
l B-chemical
- I-chemical
and I-chemical
d I-chemical
- I-chemical
galactose I-chemical
and O
β B-chemical
- I-chemical
and I-chemical
α I-chemical
- I-chemical
Xylp I-chemical
units O
. O
Indeed O
, O
in O
these O
cereal B-taxonomy_domain
brans O
, O
xylans B-chemical
have O
very O
few O
backbone O
Xylp B-chemical
units O
that O
are O
undecorated O
, O
and O
the O
side O
chains O
can O
contain O
up O
to O
six O
sugars B-chemical
. O
Reflecting O
the O
chemical O
and O
physical O
complexity O
of O
the O
plant B-taxonomy_domain
cell O
wall O
, O
microorganisms B-taxonomy_domain
that O
utilize O
these O
composite O
structures O
express O
a O
large O
number O
of O
polysaccharide B-protein_type
- I-protein_type
degrading I-protein_type
enzymes I-protein_type
, O
primarily O
glycoside B-protein_type
hydrolases I-protein_type
, O
but O
also O
polysaccharide B-protein_type
lyases I-protein_type
, O
carbohydrate B-protein_type
esterases I-protein_type
, O
and O
lytic B-protein_type
polysaccharide I-protein_type
monooxygenases I-protein_type
. O
These O
carbohydrate B-protein_type
active I-protein_type
enzymes I-protein_type
are O
grouped O
into O
sequence O
- O
based O
families O
in O
the O
CAZy O
database O
. O
With O
respect O
to O
xylan B-chemical
degradation O
, O
the O
backbone O
of O
simple O
xylans B-chemical
is O
hydrolyzed O
by O
endo B-protein_type
- I-protein_type
acting I-protein_type
xylanases I-protein_type
, O
the O
majority O
of O
which O
are O
located O
in O
glycoside B-protein_type
hydrolase I-protein_type
( O
GH B-protein_type
) O
5 B-protein_type
families O
GH10 B-protein_type
and O
GH11 B-protein_type
, O
although O
they O
are O
also O
present O
in O
GH8 B-protein_type
. O
The O
extensive O
decoration O
of O
the O
xylan B-chemical
backbone O
generally O
restricts O
the O
capacity O
of O
these O
enzymes O
to O
attack O
the O
polysaccharide B-chemical
prior O
to O
removal O
of O
the O
side O
chains O
by O
a O
range O
of O
α B-protein_type
- I-protein_type
glucuronidases I-protein_type
, O
α B-protein_type
- I-protein_type
arabinofuranosidases I-protein_type
, O
and O
esterases B-protein_type
. O
Two O
xylanases B-protein_type
, O
however O
, O
utilize O
the O
side O
chains O
as O
essential O
specificity O
determinants O
and O
thus O
target O
decorated O
forms O
of O
the O
hemicellulose B-chemical
. O
The O
GH30 B-protein_type
glucuronoxylanases B-protein_type
require O
the O
Xylp B-chemical
bound B-protein_state
at I-protein_state
the O
B-site
2 I-site
to O
contain O
a O
GlcA B-chemical
side O
chain O
( O
the O
scissile O
bond O
targeted O
by O
glycoside B-protein_type
hydrolases I-protein_type
is O
between O
subsites B-site
I-site
1 I-site
and I-site
+ I-site
1 I-site
, O
and O
subsites B-site
that O
extend O
toward O
the O
non O
- O
reducing O
and O
reducing O
ends O
of O
the O
substrate O
are O
assigned O
increasing O
negative O
and O
positive O
numbers O
, O
respectively O
). O
The O
GH5 B-protein_type
arabinoxylanase B-protein_type
( O
CtXyl5A B-protein
) O
derived O
from O
Clostridium B-species
thermocellum I-species
displays O
an O
absolute O
requirement O
for O
xylans B-chemical
that O
contain O
Araf B-chemical
side O
chains O
. O
In O
this O
enzyme O
, O
the O
key O
specificity O
determinant O
is O
the O
Araf B-chemical
appended O
to O
O3 O
of O
the O
Xylp B-chemical
bound B-protein_state
in I-protein_state
the O
active B-site
site I-site
(O
1 B-site
subsite I-site
). O
The O
reaction O
products O
generated O
from O
arabinoxylans B-chemical
, O
however O
, O
suggest O
that O
Araf B-chemical
can O
be O
accommodated O
at O
subsites B-site
distal O
to O
the O
active B-site
site I-site
. O
CtXyl5A B-protein
is O
a O
multimodular O
enzyme O
containing O
, O
in O
addition O
to O
the O
GH5 B-protein_type
catalytic B-structure_element
module I-structure_element
( O
CtGH5 B-structure_element
); O
three O
non B-structure_element
- I-structure_element
catalytic I-structure_element
carbohydrate I-structure_element
binding I-structure_element
modules I-structure_element
( O
CBMs B-structure_element
) O
belonging O
to O
families O
6 B-protein_type
( O
CtCBM6 B-structure_element
), O
13 B-protein_type
( O
CtCBM13 B-structure_element
), O
and O
62 B-protein_type
( O
CtCBM62 B-structure_element
); O
fibronectin B-protein_type
type I-protein_type
3 I-protein_type
( O
Fn3 B-structure_element
) O
domain O
; O
and O
a O
C O
- O
terminal O
dockerin B-structure_element
domain O
Fig O
. O
1 O
. O
Previous O
studies O
of O
Fn3 B-structure_element
domains O
have O
indicated O
that O
they O
might O
function O
as O
ligand B-structure_element
- I-structure_element
binding I-structure_element
modules I-structure_element
, O
as O
a O
compact O
form O
of O
peptide O
linkers O
or O
spacers O
between O
other O
domains O
, O
as O
cellulose B-structure_element
- I-structure_element
disrupting I-structure_element
modules I-structure_element
, O
or O
as O
proteins O
that O
help O
large O
enzyme O
complexes O
remain O
soluble O
. O
The O
dockerin B-structure_element
domain O
recruits O
the O
enzyme O
into O
the O
cellulosome B-complex_assembly
, O
a O
multienzyme O
plant B-taxonomy_domain
cell O
wall O
degrading O
complex O
presented O
on O
the O
surface O
of O
C B-species
. I-species
thermocellum I-species
. O
CtCBM6 B-structure_element
stabilizes O
CtGH5 B-structure_element
, O
and O
CtCBM62 B-structure_element
binds O
to O
d B-chemical
- I-chemical
galactopyranose I-chemical
and O
l B-chemical
- I-chemical
arabinopyranose I-chemical
. O
The O
function O
of O
the O
CtCBM13 B-structure_element
and O
Fn3 B-structure_element
modules O
remains O
unclear O
. O
This O
report O
exploits O
the O
crystal B-evidence
structure I-evidence
of O
mature B-protein_state
CtXyl5A B-protein
lacking B-protein_state
its O
C O
- O
terminal O
dockerin B-structure_element
domain O
( O
CtXyl5A B-mutant
- I-mutant
Doc I-mutant
), O
and O
the O
enzyme O
in B-protein_state
complex I-protein_state
with I-protein_state
ligands B-chemical
, O
to O
explore O
the O
mechanism O
of O
substrate O
specificity O
. O
The O
data O
show O
that O
the O
plasticity O
in O
substrate O
recognition O
enables O
the O
enzyme O
to O
hydrolyze O
highly O
complex O
xylans B-chemical
that O
are O
not O
accessible O
to O
classical O
GH10 B-protein_type
and O
GH11 B-protein_type
endo B-protein_type
- I-protein_type
xylanases I-protein_type
. O
Molecular O
architecture O
of O
GH5_34 B-protein_type
enzymes O
. O
Modules O
prefaced O
by O
GH B-structure_element
, O
CBM B-structure_element
, O
or O
CE B-structure_element
are O
modules O
in O
the O
indicated O
glycoside B-protein_type
hydrolase I-protein_type
, O
carbohydrate B-structure_element
binding I-structure_element
module I-structure_element
, O
or O
carbohydrate B-protein_type
esterase I-protein_type
families O
, O
respectively O
. O
Laminin_3_G B-structure_element
domain O
belongs O
to O
the O
concanavalin B-protein_type
A I-protein_type
lectin I-protein_type
superfamily I-protein_type
, O
and O
FN3 B-structure_element
denotes O
a O
fibronectin B-structure_element
type I-structure_element
3 I-structure_element
domain I-structure_element
. O
Segments O
labeled O
D O
are O
dockerin B-structure_element
domains O
. O
Substrate O
Specificity O
of O
CtXyl5A B-protein
Previous O
studies O
showed O
that O
CtXyl5A B-protein
is O
an O
arabinoxylan B-protein_type
- I-protein_type
specific I-protein_type
xylanase I-protein_type
that O
generates O
xylooligosaccharides B-chemical
with O
an O
arabinose B-chemical
linked O
O3 O
to O
the O
reducing O
end O
xylose B-chemical
. O
The O
enzyme O
is O
active O
against O
both O
wheat B-taxonomy_domain
and O
rye B-taxonomy_domain
arabinoxylans B-chemical
( O
abbreviated O
as O
WAX B-chemical
and O
RAX B-chemical
, O
respectively O
). O
It O
was O
proposed O
that O
arabinose B-chemical
decorations O
make O
productive O
interactions O
with O
a O
pocket B-site
(O
2 B-site
*) I-site
that O
is O
abutted O
onto O
the O
active B-site
site I-site
or O
B-site
1 I-site
subsite I-site
. O
Arabinose B-chemical
side O
chains O
of O
the O
other O
backbone O
xylose B-chemical
units O
in O
the O
oligosaccharides B-chemical
generated O
by O
CtXyl5A B-protein
were O
essentially O
random O
. O
These O
data O
suggest O
that O
O3 O
, O
and O
possibly O
O2 O
, O
on O
the O
xylose B-chemical
residues O
at O
subsites B-site
distal O
to O
the O
active B-site
site I-site
and O
B-site
2 I-site
* I-site
pocket I-site
are O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
, O
implying O
that O
the O
enzyme O
can O
access O
highly O
decorated O
xylans B-chemical
. O
To O
test O
this O
hypothesis O
, O
the O
activity O
of O
CtXyl5A B-protein
against O
xylans B-chemical
from O
cereal B-taxonomy_domain
brans O
was O
assessed O
. O
CtXyl5a B-protein
was O
incubated B-experimental_method
with O
a O
range O
of O
xylans B-chemical
for O
16 O
h O
at O
60 O
° O
C O
, O
and O
the O
limit O
products O
were O
visualized O
by O
TLC B-experimental_method
. O
These O
xylans B-chemical
are O
highly O
decorated O
not O
only O
with O
Araf B-chemical
and O
GlcA B-chemical
units O
but O
also O
with O
l B-chemical
- I-chemical
Gal I-chemical
, O
d B-chemical
- I-chemical
Gal I-chemical
, O
and O
d B-chemical
- I-chemical
Xyl I-chemical
. O
Indeed O
, O
very O
few O
xylose B-chemical
units O
in O
the O
backbone O
of O
bran O
xylans B-chemical
lack O
side O
chains O
. O
The O
data O
presented O
in O
Table O
1 O
showed O
that O
CtXyl5A B-protein
was O
active O
against O
corn B-taxonomy_domain
bran O
xylan B-chemical
( O
CX B-chemical
). O
In O
contrast O
typical O
endo B-protein_type
- I-protein_type
xylanases I-protein_type
from O
GH10 B-protein_type
and O
GH11 B-protein_type
were O
unable O
to O
attack O
CX B-chemical
, O
reflecting O
the O
lack B-protein_state
of I-protein_state
undecorated O
xylose B-chemical
units O
in O
the O
backbone O
( O
the O
active B-site
site I-site
of O
these O
enzymes O
can O
only O
bind B-protein_state
to I-protein_state
non O
- O
substituted O
xylose B-chemical
residues O
). O
The O
limit O
products O
generated O
by O
CtXyl5A B-protein
from O
CX B-chemical
consisted O
of O
an O
extensive O
range O
of O
oligosaccharides B-chemical
. O
These O
data O
support O
the O
view O
that O
in O
subsites B-site
out O
with O
the O
active B-site
site I-site
the O
O2 O
and O
O3 O
groups O
of O
the O
bound O
xylose B-chemical
units O
are O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
and O
will O
thus O
tolerate O
decoration O
. O
Kinetics B-evidence
of O
GH5_34 B-protein_type
arabinoxylanases B-protein_type
Enzyme O
Variant O
kcat B-evidence
/ O
Km B-evidence
WAX B-chemical
RAX B-chemical
CX B-chemical
min O
O
1mg O
O
1ml O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
- I-structure_element
Fn3 I-structure_element
- I-structure_element
CBM62 I-structure_element
800 O
ND O
460 O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
- I-structure_element
Fn3 I-structure_element
1 O
, O
232 O
ND O
659 O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
1 O
, O
307 O
ND O
620 O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
488 O
ND O
102 O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
: O
E68A B-mutant
NA O
NA O
NA O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
: O
Y92A B-mutant
NA O
NA O
NA O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
: O
N135A B-mutant
260 O
ND O
ND O
CtXyl5A B-protein
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
: O
N139A B-mutant
NA O
NA O
NA O
AcGH5 B-protein
Wild B-protein_state
type I-protein_state
628 O
1 O
, O
641 O
289 O
GpGH5 B-protein
Wild B-protein_state
type I-protein_state
2 O
, O
600 O
9 O
, O
986 O
314 O
VbGH5 B-protein
Wild B-protein_state
type I-protein_state
ND O
ND O
ND O
VbGH5 B-protein
D45A B-mutant
102 O
203 O
23 O
To O
explore O
whether O
substrate O
bound B-protein_state
only I-protein_state
at I-protein_state
B-site
2 I-site
* I-site
and O
B-site
1 I-site
in O
the O
negative B-site
subsites I-site
was O
hydrolyzed O
by O
CtXyl5A B-protein
, O
the O
limit O
products O
of O
CX B-chemical
digested O
by O
the O
arabinoxylanase B-protein_type
were O
subjected O
to O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
using O
a O
Bio O
- O
Gel O
P O
- O
2 O
, O
and O
the O
smallest O
oligosaccharides B-chemical
( O
largest O
elution O
volume O
) O
were O
chosen O
for O
further O
study O
. O
HPAEC B-experimental_method
analysis O
of O
the O
smallest O
oligosaccharide B-chemical
fraction O
( O
pool O
4 O
) O
contained O
two O
species O
with O
retention O
times O
of O
14 O
. O
0 O
min O
( O
oligosaccharide B-chemical
1 O
) O
and O
20 O
. O
8 O
min O
( O
oligosaccharide B-chemical
2 O
) O
( O
Fig O
. O
2 O
). O
Positive B-experimental_method
mode I-experimental_method
electrospray I-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
showed O
that O
pool O
4 O
contained O
exclusively O
molecular O
ions O
with O
a O
m O
/ O
z O
= O
305 O
[ O
M O
+ O
Na O
]+, O
which O
corresponds O
to O
a O
pentose B-chemical
- O
pentose B-chemical
disaccharide B-chemical
( O
molecular O
mass O
= O
282 O
Da O
) O
as O
a O
sodium O
ion O
adduct O
, O
whereas O
a O
dimer O
of O
the O
disaccharide B-chemical
with O
a O
sodium O
adduct O
( O
m O
/ O
z O
= O
587 O
[ O
2M O
+ O
Na O
]+) O
was O
also O
evident O
. O
The O
monosaccharide O
composition O
of O
pool O
4 O
determined O
by O
TFA B-experimental_method
hydrolysis I-experimental_method
contained O
xylose B-chemical
and O
arabinose B-chemical
in O
a O
3 O
: O
1 O
ratio O
. O
This O
suggests O
that O
the O
two O
oligosaccharides B-chemical
consist O
of O
two O
disaccharides B-chemical
: O
one O
consisting O
of O
two O
xylose B-chemical
residues O
and O
the O
other O
consisting O
of O
an O
arabinose B-chemical
linked O
to O
a O
xylose B-chemical
. O
Treatment O
of O
pool O
4 O
with O
the O
nonspecific B-protein_type
arabinofuranosidase I-protein_type
, O
CjAbf51A B-protein
, O
resulted O
in O
the O
loss O
of O
oligosaccharide B-chemical
2 O
and O
the O
production O
of O
both O
xylose B-chemical
and O
arabinose B-chemical
, O
indicative O
of O
a O
disaccharide B-chemical
of O
xylose B-chemical
and O
arabinose B-chemical
. O
Incubation O
of O
pool O
4 O
with O
a O
β B-protein_type
- I-protein_type
1 I-protein_type
, I-protein_type
3 I-protein_type
- I-protein_type
xylosidase I-protein_type
( O
XynB B-protein
) O
converted O
oligosaccharide B-chemical
1 O
into O
xylose B-chemical
, O
demonstrating O
that O
this O
molecule O
is O
the O
disaccharide B-chemical
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
3 I-chemical
- I-chemical
xylobiose I-chemical
. O
This O
view O
is O
supported O
by O
the O
inability O
of O
a O
β B-protein_type
- I-protein_type
1 I-protein_type
, I-protein_type
4 I-protein_type
- I-protein_type
specific I-protein_type
xylosidase I-protein_type
to O
hydrolyze O
oligosaccharide B-chemical
1 O
or O
oligosaccharide B-chemical
2 O
( O
data O
not O
shown O
). O
The O
crucial O
importance O
of O
occupancy O
of O
the O
B-site
2 I-site
* I-site
pocket I-site
for O
catalytic O
competence O
is O
illustrated O
by O
the O
inability O
of O
the O
enzyme O
to O
hydrolyze O
linear O
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
xylooligosaccharides I-chemical
. O
The O
generation O
of O
Araf B-chemical
- I-chemical
Xylp I-chemical
and O
Xyl B-chemical
- I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
3 I-chemical
- I-chemical
Xyl I-chemical
as O
reaction O
products O
demonstrates O
that O
occupancy O
of O
the O
B-site
2 I-site
subsite I-site
is O
not O
essential O
for O
catalytic O
activity O
, O
which O
is O
in O
contrast O
to O
all O
endo B-protein_type
- I-protein_type
acting I-protein_type
xylanases I-protein_type
where O
this O
subsite B-site
plays O
a O
critical O
role O
in O
enzyme O
activity O
. O
Indeed O
, O
the O
data O
demonstrate O
that O
B-site
2 I-site
* I-site
plays O
a O
more O
important O
role O
in O
productive O
substrate O
binding O
than O
the O
B-site
2 I-site
subsite I-site
. O
Unfortunately O
, O
the O
inability O
to O
generate O
highly O
purified O
( B-chemical
Xyl I-chemical
- I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
) I-chemical
n I-chemical
-[ I-chemical
β I-chemical
- I-chemical
1 I-chemical
, I-chemical
3 I-chemical
- I-chemical
Xyl I-chemical
/ I-chemical
Ara I-chemical
]- I-chemical
Xyl I-chemical
oligosaccharides B-chemical
from O
arabinoxylans B-chemical
prevented O
the O
precise O
binding O
energies O
at O
the O
negative O
subsites O
to O
be O
determined O
. O
Identification O
of O
the O
disaccharide B-chemical
reaction O
products O
generated O
from O
CX B-chemical
. O
The O
smallest O
reaction O
products O
were O
purified O
by O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
and O
analyzed O
by O
HPAEC B-experimental_method
( O
A O
) O
and O
positive O
mode O
ESI B-experimental_method
- I-experimental_method
MS I-experimental_method
( O
B O
), O
respectively O
. O
The O
samples O
were O
treated O
with O
a O
nonspecific B-protein_type
arabinofuranosidase I-protein_type
( O
CjAbf51A B-protein
) O
and O
a O
GH3 B-protein_type
xylosidase I-protein_type
( O
XynB B-protein
) O
that O
targeted O
β O
- O
1 O
, O
3 O
- O
xylosidic O
bonds O
. O
X O
, O
xylose B-chemical
; O
A O
, O
arabinose B-chemical
. O
The O
m O
/ O
z O
= O
305 O
species O
denotes O
a O
pentose B-chemical
disaccharide B-chemical
as O
a O
sodium O
adduct O
[ O
M O
+ O
Na O
]+, O
whereas O
the O
m O
/ O
z O
= O
587 O
signal O
corresponds O
to O
an O
ESI B-experimental_method
- I-experimental_method
MS I-experimental_method
dimer O
of O
the O
pentose B-chemical
disaccharide B-chemical
also O
as O
a O
sodium O
adduct O
[ O
2M O
+ O
Na O
]+. O
Crystal B-evidence
Structure I-evidence
of O
the O
Catalytic B-structure_element
Module I-structure_element
of O
CtXyl5A B-protein
in B-protein_state
Complex I-protein_state
with I-protein_state
Ligands B-chemical
To O
understand O
the O
structural O
basis O
for O
the O
biochemical O
properties O
of O
CtXyl5A B-protein
, O
the O
crystal B-evidence
structure I-evidence
of O
the O
enzyme O
with O
ligands O
that O
occupy O
the O
substrate B-site
binding I-site
cleft I-site
and O
the O
critical O
B-site
2 I-site
* I-site
subsite I-site
were O
sought O
. O
The O
data O
presented O
in O
Fig O
. O
3A O
show O
the O
structure B-evidence
of O
the O
CtXyl5A B-protein
derivative O
CtGH5 B-structure_element
- I-structure_element
CtCBM6 I-structure_element
in B-protein_state
complex I-protein_state
with I-protein_state
arabinose B-chemical
bound B-protein_state
in I-protein_state
the O
B-site
2 I-site
* I-site
pocket I-site
. O
Interestingly O
, O
the O
bound B-protein_state
arabinose B-chemical
was O
in O
the O
pyranose B-chemical
conformation O
rather O
than O
in O
its O
furanose B-chemical
form O
found O
in O
arabinoxylans B-chemical
. O
O1 O
was O
facing O
toward O
the O
active B-site
site I-site
B-site
1 I-site
subsite I-site
, O
indicative O
of O
the O
bound B-protein_state
arabinose B-chemical
being O
in O
the O
right O
orientation O
to O
be O
linked O
to O
the O
xylan B-chemical
backbone O
via O
an O
α O
- O
1 O
, O
3 O
linkage O
. O
As O
discussed O
on O
below O
, O
the O
axial O
O4 O
of O
the O
Arap B-chemical
did O
not O
interact O
with O
the O
B-site
2 I-site
* I-site
subsite I-site
, O
suggesting O
that O
the O
pocket B-site
might O
be O
capable O
of O
binding O
a O
xylose B-chemical
molecule O
. O
Indeed O
, O
soaking B-experimental_method
apo B-protein_state
crystals B-evidence
with O
xylose B-chemical
showed O
that O
the O
pentose B-chemical
sugar B-chemical
also O
bound B-protein_state
in I-protein_state
the O
B-site
2 I-site
* I-site
subsite I-site
in O
its O
pyranose B-chemical
conformation O
( O
Fig O
. O
3B O
). O
These O
crystal B-evidence
structures I-evidence
support O
the O
biochemical O
data O
presented O
above O
showing O
that O
the O
enzyme O
generated O
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
3 I-chemical
- I-chemical
xylobiose I-chemical
from O
CX B-chemical
, O
which O
would O
require O
the O
disaccharide B-chemical
to O
bind O
at O
the O
B-site
1 I-site
and I-site
I-site
2 I-site
* I-site
subsites I-site
. O
A O
third O
product O
complex O
was O
generated O
by O
co B-experimental_method
- I-experimental_method
crystallizing I-experimental_method
the O
nucleophile B-protein_state
inactive I-protein_state
mutant B-protein_state
CtGH5E279S B-mutant
- O
CtCBM6 B-structure_element
with O
a O
WAX B-chemical
- O
derived O
oligosaccharide B-chemical
( O
Fig O
. O
3C O
). O
The O
data O
revealed O
a O
pentasaccharide B-chemical
bound B-protein_state
to I-protein_state
the O
enzyme O
, O
comprising O
β B-chemical
- I-chemical
1 I-chemical
, I-chemical
4 I-chemical
- I-chemical
xylotetraose I-chemical
with O
an O
Araf B-chemical
linked O
α O
- O
1 O
, O
3 O
to O
the O
reducing O
end O
xylose B-chemical
. O
The O
xylotetraose B-chemical
was O
positioned O
in O
subsites B-site
I-site
1 I-site
to I-site
I-site
4 I-site
and O
the O
Araf B-chemical
in O
the O
B-site
2 I-site
* I-site
pocket I-site
. O
Analysis O
of O
the O
three O
structures B-evidence
showed O
that O
O1 O
, O
O2 O
, O
O3 O
, O
and O
the O
endocyclic O
oxygen O
occupied O
identical O
positions O
in O
the O
Arap B-chemical
, O
Araf B-chemical
, O
and O
Xylp B-chemical
ligands O
bound B-protein_state
in I-protein_state
the O
B-site
2 I-site
* I-site
subsite I-site
and O
thus O
made O
identical O
interactions O
with O
the O
pocket B-site
. O
O1 O
makes O
a O
polar B-bond_interaction
contact I-bond_interaction
with O
Nδ2 O
of O
Asn139 B-residue_name_number
, O
O2 O
is O
within O
hydrogen B-bond_interaction
bonding I-bond_interaction
distance O
with O
Oδ1 O
of O
Asn139 B-residue_name_number
and O
the O
backbone O
N O
of O
Asn135 B-residue_name_number
, O
and O
O3 O
interacts O
with O
the O
N O
of O
Gly136 B-residue_name_number
and O
Oϵ2 O
of O
Glu68 B-residue_name_number
. O
Although O
O4 O
of O
Arap B-chemical
does O
not O
make O
a O
direct O
interaction O
with O
the O
enzyme O
, O
O4 O
and O
O5 O
of O
Xylp B-chemical
and O
Araf B-chemical
, O
respectively O
, O
form O
hydrogen B-bond_interaction
bonds I-bond_interaction
with O
Oϵ1 O
of O
Glu68 B-residue_name_number
. O
Finally O
Tyr92 B-residue_name_number
makes O
apolar O
parallel B-bond_interaction
interactions I-bond_interaction
with O
the O
pyranose B-chemical
or O
furanose B-chemical
rings O
of O
the O
three O
sugars O
. O
Representation O
of O
the O
residues O
involved O
in O
the O
ligands O
recognition O
at O
the O
B-site
2 I-site
* I-site
subsite I-site
. O
Interacting O
residues O
are O
represented O
as O
stick O
in O
blue O
, O
and O
the O
catalytic B-site
residues I-site
and O
the O
mutated B-experimental_method
glutamate B-residue_name
( O
into O
a O
serine B-residue_name
) O
are O
in O
magenta O
. O
A O
, O
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
in B-protein_state
complex I-protein_state
with I-protein_state
an O
arabinopyranose B-chemical
. O
B O
, O
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
in B-protein_state
complex I-protein_state
with I-protein_state
a O
xylopyranose B-chemical
. O
C O
, O
CtGH5E279S B-mutant
- O
CBM6 B-structure_element
in B-protein_state
complex I-protein_state
with I-protein_state
a O
pentasaccharide B-chemical
( O
β1 B-chemical
, I-chemical
4 I-chemical
- I-chemical
xylotetraose I-chemical
with O
an O
l B-chemical
- I-chemical
Araf I-chemical
linked O
α1 O
, O
3 O
to O
the O
reducing O
end O
xylose B-chemical
). O
The O
xylan B-chemical
backbone O
is O
shown O
transparently O
for O
more O
clarity O
. O
Densities B-evidence
shown O
in O
blue O
are O
RefMac O
maximum B-evidence
- I-evidence
likelihood I-evidence
σA I-evidence
- I-evidence
weighted I-evidence
2Fo I-evidence
I-evidence
Fc I-evidence
at I-evidence
1 I-evidence
. I-evidence
5 I-evidence
σ I-evidence
. O
The O
importance O
of O
the O
interactions O
between O
the O
ligands O
and O
the O
side O
chains O
of O
the O
residues O
in O
the O
B-site
2 I-site
* I-site
pocket I-site
were O
evaluated O
by O
alanine B-experimental_method
substitution I-experimental_method
of O
these O
amino O
acids O
. O
The O
mutants B-protein_state
E68A B-mutant
, O
Y92A B-mutant
, O
and O
N139A B-mutant
were O
all O
inactive B-protein_state
( O
Table O
1 O
), O
demonstrating O
the O
importance O
of O
the O
interactions O
of O
these O
residues O
with O
the O
substrate O
and O
reinforcing O
the O
critical O
role O
the O
B-site
2 I-site
* I-site
subsite I-site
plays O
in O
the O
activity O
of O
the O
enzyme O
. O
N135A B-mutant
retained O
wild B-protein_state
type I-protein_state
activity O
because O
the O
O2 O
of O
the O
sugars O
interacts O
with O
the O
backbone O
N O
of O
Asn135 B-residue_name_number
and O
not O
with O
the O
side O
chain O
. O
Because O
the O
hydroxyls O
of O
Xylp B-chemical
or O
Araf B-chemical
in O
the O
B-site
2 I-site
* I-site
pocket I-site
are O
not O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
, O
the O
active B-site
site I-site
of O
the O
arabinoxylanase B-protein_type
can O
only O
bind O
to O
xylose B-chemical
residues O
that O
contain O
a O
single O
xylose B-chemical
or O
arabinose B-chemical
O3 O
decoration O
. O
This O
may O
explain O
why O
the O
kcat B-evidence
/ O
Km B-evidence
for O
CtXyl5A B-protein
against O
WAX B-chemical
was O
2 O
- O
fold O
higher O
than O
against O
CX B-chemical
( O
Table O
1 O
). O
WAX B-chemical
is O
likely O
to O
have O
a O
higher O
concentration O
of O
single O
Araf B-chemical
decorations O
compared O
with O
CX B-chemical
and O
thus O
contain O
more O
substrate O
available O
to O
the O
arabinoxylanase B-protein_type
. O
In O
the O
active B-site
site I-site
of O
CtXyl5A B-protein
the O
α B-chemical
- I-chemical
d I-chemical
- I-chemical
Xylp I-chemical
, O
which O
is O
in O
its O
relaxed O
4C1 O
conformation O
, O
makes O
the O
following O
interactions O
with O
the O
enzyme O
( O
Fig O
. O
4 O
, O
A O
O
C O
): O
O1 O
hydrogen B-bond_interaction
bonds I-bond_interaction
with O
the O
Nδ1 O
of O
His253 B-residue_name_number
and O
Oϵ2 O
of O
Glu171 B-residue_name_number
( O
catalytic O
acid O
- O
base O
) O
and O
makes O
a O
possible O
weak O
polar B-bond_interaction
contact I-bond_interaction
with O
the O
OH O
of O
Tyr255 B-residue_name_number
and O
Oγ O
of O
Ser279 B-residue_name_number
( O
mutation O
of O
the O
catalytic O
nucleophile O
); O
O2 O
hydrogen B-bond_interaction
bonds I-bond_interaction
with O
Nδ2 O
of O
Asn170 B-residue_name_number
and O
OH O
of O
Tyr92 B-residue_name_number
. O
O3 O
( O
O1 O
of O
the O
Araf B-chemical
at O
the O
B-site
2 I-site
* I-site
subsite I-site
) O
makes O
a O
polar B-bond_interaction
contact I-bond_interaction
with O
Nδ2 O
of O
Asn139 B-residue_name_number
; O
the O
endocyclic O
oxygen O
hydrogens B-bond_interaction
bonds I-bond_interaction
with O
the O
OH O
of O
Tyr255 B-residue_name_number
. O
The O
Xylp B-chemical
in O
the O
active B-site
site I-site
makes O
strong O
parallel B-bond_interaction
apolar I-bond_interaction
interactions I-bond_interaction
with O
Phe310 B-residue_name_number
. O
Substrate O
recognition O
in O
the O
active B-site
site I-site
is O
conserved B-protein_state
between O
CtXyl5A B-protein
and O
the O
closest O
GH5 B-protein_type
structural O
homolog O
, O
the O
endoglucanase B-protein_type
BaCel5A B-protein
( O
PDB O
code O
1qi2 O
) O
as O
noted O
previously O
. O
Comparison O
of O
the O
ligand O
recognition O
at O
the O
distal O
negative B-site
subsites I-site
between O
CtGH5E279S B-mutant
- O
CBM6 B-structure_element
, O
the O
cellulase B-protein_type
BaCel5A B-protein
, O
and O
the O
xylanase B-protein_type
GH10 B-protein_type
. O
A O
O
C O
show O
CtGH5E279S B-mutant
- O
CBM6 O
is O
in B-protein_state
complex I-protein_state
with I-protein_state
a O
pentasaccharide B-chemical
( O
β1 B-chemical
, I-chemical
4 I-chemical
- I-chemical
xylotetraose I-chemical
with O
an O
l B-chemical
- I-chemical
Araf I-chemical
linked O
α1 O
, O
3 O
to O
the O
reducing O
end O
xylose B-chemical
). O
A O
, O
Poseview O
representation O
highlighting O
the O
hydrogen B-bond_interaction
bonding I-bond_interaction
and O
the O
hydrophobic B-bond_interaction
interactions I-bond_interaction
that O
occur O
in O
the O
negative B-site
subsites I-site
. O
C O
, O
density B-evidence
of O
the O
ligand O
shown O
in O
blue O
is O
RefMac O
maximum B-evidence
- I-evidence
likelihood I-evidence
σA I-evidence
- I-evidence
weighted I-evidence
2Fo I-evidence
I-evidence
Fc I-evidence
at I-evidence
1 I-evidence
. I-evidence
5 I-evidence
σ I-evidence
. O
D O
and O
E O
display O
BaCel5A B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
deoxy B-chemical
- I-chemical
2 I-chemical
- I-chemical
fluoro I-chemical
- I-chemical
β I-chemical
- I-chemical
d I-chemical
- I-chemical
cellotrioside I-chemical
( O
PDB O
code O
1qi2 O
), O
and O
F O
and O
G O
show O
CmXyn10B B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
a O
xylotriose B-chemical
( O
PDB O
code O
1uqy O
). O
B O
, O
D O
, O
and O
F O
are O
surface O
representations O
( O
CtGH5E279S B-mutant
- O
CBM6 O
in O
gray O
, O
BaCel5A B-protein
in O
cyan O
, O
and O
the O
xylanase B-protein_type
GH10 B-protein_type
in O
light O
brown O
). O
The O
black O
dashes O
represent O
the O
hydrogen B-bond_interaction
bonds I-bond_interaction
. O
The O
capacity O
of O
CtXyl5A B-protein
to O
act O
on O
the O
highly O
decorated O
xylan B-chemical
CX B-chemical
indicates O
that O
O3 O
and O
possibly O
O2 O
of O
the O
backbone O
Xylp B-chemical
units O
are O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
. O
This O
is O
consistent O
with O
the O
interaction O
of O
the O
xylotetraose B-chemical
backbone O
with O
the O
enzyme O
distal O
to O
the O
active B-site
site I-site
. O
A O
surface O
representation O
of O
the O
enzyme O
( O
Fig O
. O
4B O
) O
shows O
that O
O3 O
and O
O2 O
of O
xylose B-chemical
units O
at O
subsites B-site
I-site
2 I-site
to I-site
I-site
4 I-site
are O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
and O
are O
thus O
available O
for O
decoration O
. O
Indeed O
, O
these O
pyranose B-chemical
sugars B-chemical
make O
very O
weak O
apolar B-bond_interaction
interactions I-bond_interaction
with O
the O
arabinoxylanase B-protein_type
. O
At O
B-site
2 I-site
, O
Xylp B-chemical
makes O
planar B-bond_interaction
apolar I-bond_interaction
interactions I-bond_interaction
with O
the O
Araf B-chemical
bound B-protein_state
to I-protein_state
the O
B-site
2 I-site
* I-site
subsite I-site
( O
Fig O
. O
4C O
). O
Xylp B-chemical
at O
subsites B-site
I-site
2 I-site
and I-site
I-site
3 I-site
, O
respectively O
, O
make O
weak O
hydrophobic B-bond_interaction
contact I-bond_interaction
with O
Val318 B-residue_name_number
, O
the O
B-site
3 I-site
Xylp B-chemical
makes O
planar B-bond_interaction
apolar I-bond_interaction
interactions I-bond_interaction
with O
Ala137 B-residue_name_number
, O
whereas O
the O
xylose B-chemical
at O
B-site
4 I-site
forms O
parallel B-bond_interaction
apolar I-bond_interaction
contacts I-bond_interaction
with O
Trp69 B-residue_name_number
. O
Comparison O
of O
the O
distal O
negative B-site
subsites I-site
of O
CtXyl5A B-protein
with O
BaCel5A B-protein
and O
a O
typical O
GH10 B-protein_type
xylanase B-protein_type
( O
CmXyn10B B-protein
, O
PDB O
code O
1uqy O
) O
highlights O
the O
paucity O
of O
interactions O
between O
the O
arabinoxylanase B-protein_type
and O
its O
substrate O
out O
with O
the O
active B-site
site I-site
( O
Fig O
. O
4 O
). O
Thus O
, O
the O
cellulase B-protein_type
contains O
three O
negative B-site
subsites I-site
and O
the O
sugars B-chemical
bound B-protein_state
in I-protein_state
the O
B-site
2 I-site
and I-site
I-site
3 I-site
subsites I-site
make O
a O
total O
of O
9 O
polar B-bond_interaction
interactions I-bond_interaction
with O
the O
enzyme O
( O
Fig O
. O
4 O
, O
D O
and O
E O
). O
The O
GH10 B-protein_type
xylanase B-protein_type
also O
contains O
a O
B-site
2 I-site
subsite I-site
that O
, O
similar O
to O
the O
cellulase B-protein_type
, O
makes O
numerous O
interactions O
with O
the O
substrate O
( O
Fig O
. O
4 O
, O
F O
and O
G O
). O
The O
Influence O
of O
the O
Modular O
Architecture O
of O
CtXyl5A B-protein
on O
Catalytic O
Activity O
CtXyl5A B-protein
, O
in O
addition O
to O
its O
catalytic B-structure_element
module I-structure_element
, O
contains O
three O
CBMs B-structure_element
( O
CtCBM6 B-structure_element
, O
CtCBM13 B-structure_element
, O
and O
CtCBM62 B-structure_element
) O
and O
a O
fibronectin B-structure_element
domain I-structure_element
( O
CtFn3 B-structure_element
). O
A O
previous O
study O
showed O
that O
although O
the O
CBM6 B-structure_element
bound B-protein_state
in I-protein_state
an O
exo B-protein_state
- I-protein_state
mode I-protein_state
to O
xylo B-chemical
- I-chemical
and I-chemical
cellulooligosaccharides I-chemical
, O
the O
primary O
role O
of O
this O
module O
was O
to O
stabilize O
the O
structure O
of O
the O
GH5 B-protein_type
catalytic B-structure_element
module I-structure_element
. O
To O
explore O
the O
contribution O
of O
the O
other O
non B-structure_element
- I-structure_element
catalytic I-structure_element
modules I-structure_element
to O
CtXyl5A B-protein
function O
, O
the O
activity O
of O
a O
series O
of O
truncated B-protein_state
derivatives O
of O
the O
arabinoxylanase B-protein_type
were O
assessed O
. O
The O
data O
in O
Table O
1 O
show O
that O
removal B-experimental_method
of I-experimental_method
CtCBM62 B-structure_element
caused O
a O
modest O
increase O
in O
activity O
against O
both O
WAX B-chemical
and O
CX B-chemical
, O
whereas O
deletion B-experimental_method
of I-experimental_method
the O
Fn3 B-structure_element
domain O
had O
no O
further O
impact O
on O
catalytic O
performance O
. O
Truncation B-experimental_method
of O
CtCBM13 B-structure_element
, O
however O
, O
caused O
a O
4 O
O
5 O
- O
fold O
reduction O
in O
activity O
against O
both O
substrates O
. O
Members O
of O
CBM13 B-structure_element
have O
been O
shown O
to O
bind O
to O
xylans B-chemical
, O
mannose B-chemical
, O
and O
galactose B-chemical
residues O
in O
complex B-chemical
glycans I-chemical
, O
hinting O
that O
the O
function O
of O
CtCBM13 B-structure_element
is O
to O
increase O
the O
proximity O
of O
substrate O
to O
the O
catalytic B-structure_element
module I-structure_element
of O
CtXyl5A B-protein
. O
Binding B-experimental_method
studies I-experimental_method
, O
however O
, O
showed O
that O
CtCBM13 B-structure_element
displayed O
no O
affinity O
for O
a O
range O
of O
relevant O
glycans B-chemical
including O
WAX B-chemical
, O
CX B-chemical
, O
xylose B-chemical
, O
mannose B-chemical
, O
galactose B-chemical
, O
and O
birchwood B-chemical
xylan I-chemical
( O
BX B-chemical
) O
( O
data O
not O
shown O
). O
It O
would O
appear O
, O
therefore O
, O
that O
CtCBM13 B-structure_element
makes O
a O
structural O
contribution O
to O
the O
function O
of O
CtXyl5A B-protein
. O
Crystal B-evidence
Structure I-evidence
of O
CtXyl5A B-mutant
- I-mutant
D I-mutant
To O
explore O
further O
the O
role O
of O
the O
non B-structure_element
- I-structure_element
catalytic I-structure_element
modules I-structure_element
in O
CtXyl5A B-protein
the O
crystal B-evidence
structure I-evidence
of O
CtXyl5A B-protein
extending O
from O
CtGH5 B-structure_element
to O
CtCBM62 B-structure_element
was O
sought O
. O
To O
obtain O
a O
construct O
that O
could O
potentially O
be O
crystallized B-experimental_method
, O
the O
protein O
was O
generated O
without B-protein_state
the O
C O
- O
terminal O
dockerin B-structure_element
domain O
because O
it O
is O
known O
to O
be O
unstable O
and O
prone O
to O
cleavage O
. O
Using O
this O
construct O
( O
CtXyl5A B-mutant
- I-mutant
D I-mutant
) O
the O
crystal B-evidence
structure I-evidence
of O
the O
arabinoxylanase B-protein_type
was O
determined O
by O
molecular B-experimental_method
replacement I-experimental_method
to O
a O
resolution O
of O
2 O
. O
64 O
O
with O
Rwork B-evidence
and O
Rfree B-evidence
at O
23 O
. O
7 O
% O
and O
27 O
. O
8 O
%, O
respectively O
. O
The O
structure B-evidence
comprises O
a O
continuous O
polypeptide O
extending O
from O
Ala36 B-residue_range
to I-residue_range
Trp742 I-residue_range
displaying O
four O
modules O
GH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
- I-structure_element
Fn3 I-structure_element
. O
Although O
there O
was O
some O
electron B-evidence
density I-evidence
for O
CtCBM62 B-structure_element
, O
it O
was O
not O
sufficient O
to O
confidently O
build O
the O
module O
( O
Fig O
. O
5 O
). O
Further O
investigation O
of O
the O
crystal B-evidence
packing I-evidence
revealed O
a O
large O
solvent B-site
channel I-site
adjacent O
to O
the O
area O
the O
CBM62 B-structure_element
occupies O
. O
We O
postulate O
that O
the O
reason O
for O
the O
poor O
electron B-evidence
density I-evidence
is O
due O
to O
the O
CtCBM62 B-structure_element
being O
mobile B-protein_state
compared O
with O
the O
rest O
of O
the O
protein O
. O
The O
structures B-evidence
of O
CtGH5 B-structure_element
and O
CtCBM6 B-structure_element
have O
been O
described O
previously O
. O
Surface O
representation O
of O
the O
tetra O
- O
modular O
arabinoxylanase B-protein_type
and O
zoom O
view O
on O
the O
CtGH5 B-structure_element
loop B-structure_element
. O
The O
blue O
module O
is O
the O
CtGH5 B-structure_element
catalytic B-structure_element
domain I-structure_element
, O
the O
green O
module O
corresponds O
to O
the O
CtCBM6 B-structure_element
, O
the O
yellow O
module O
is O
the O
CtCBM13 B-structure_element
, O
and O
the O
salmon O
module O
is O
the O
fibronectin B-structure_element
domain I-structure_element
. O
The O
CtGH5 B-structure_element
loop B-structure_element
is O
stabilized O
between O
the O
CtCBM6 B-structure_element
and O
the O
CtCBM13 B-structure_element
modules O
. O
CtCBM13 B-structure_element
extends O
from O
Gly567 B-residue_range
to I-residue_range
Pro648 I-residue_range
. O
Typical O
of O
CBM13 B-protein_type
proteins O
CtCBM13 B-structure_element
displays O
a O
β B-structure_element
- I-structure_element
trefoil I-structure_element
fold I-structure_element
comprising O
the O
canonical O
pseudo O
3 O
- O
fold O
symmetry O
with O
a O
3 B-structure_element
- I-structure_element
fold I-structure_element
repeating I-structure_element
unit I-structure_element
of O
40 B-residue_range
I-residue_range
50 I-residue_range
amino I-residue_range
acid I-residue_range
residues O
characteristic O
of O
the O
Ricin B-protein_type
superfamily I-protein_type
. O
Each O
repeat B-structure_element
contains O
two O
pairs O
of O
antiparallel B-structure_element
β I-structure_element
- I-structure_element
strands I-structure_element
. O
A O
Dali B-experimental_method
search I-experimental_method
revealed O
structural O
homologs O
from O
the O
CBM13 B-protein_type
family O
with O
an O
root B-evidence
mean I-evidence
square I-evidence
deviation I-evidence
less O
than O
2 O
. O
0 O
O
and O
sequence O
identities O
of O
less O
than O
20 O
% O
that O
include O
the O
functionally O
relevant O
homologs O
C B-species
. I-species
thermocellum I-species
exo B-protein_type
- I-protein_type
β I-protein_type
- I-protein_type
1 I-protein_type
, I-protein_type
3 I-protein_type
- I-protein_type
galactanase I-protein_type
( O
PDB O
code O
3vsz O
), O
Streptomyces B-species
avermitilis I-species
β B-protein_type
- I-protein_type
l I-protein_type
- I-protein_type
arabinopyranosidase I-protein_type
( O
PDB O
code O
3a21 O
), O
Streptomyces B-species
lividans I-species
xylanase B-protein
10A I-protein
( O
PDB O
code O
, O
1mc9 O
), O
and O
Streptomyces B-species
olivaceoviridis I-species
E I-species
- I-species
86 I-species
xylanase B-protein
10A I-protein
( O
PDB O
code O
1v6v O
). O
The O
Fn3 B-structure_element
module O
displays O
a O
typical O
β B-structure_element
- I-structure_element
sandwich I-structure_element
fold I-structure_element
with O
the O
two O
sheets B-structure_element
comprising O
, O
primarily O
, O
three O
antiparallel B-structure_element
strands I-structure_element
in O
the O
order O
β1 B-structure_element
- I-structure_element
β2 I-structure_element
- I-structure_element
β5 I-structure_element
in O
β B-structure_element
- I-structure_element
sheet I-structure_element
1 I-structure_element
and O
β4 B-structure_element
- I-structure_element
β3 I-structure_element
- I-structure_element
β6 I-structure_element
in O
β B-structure_element
- I-structure_element
sheet I-structure_element
2 I-structure_element
. O
Although O
β B-structure_element
- I-structure_element
sheet I-structure_element
2 I-structure_element
presents O
a O
cleft B-site
- O
like O
topology O
, O
typical O
of O
endo B-protein_type
- I-protein_type
binding I-protein_type
CBMs I-protein_type
, O
the O
surface O
lacks O
aromatic O
residues O
that O
play O
a O
key O
role O
in O
ligand O
recognition O
, O
and O
in O
the O
context O
of O
the O
full B-protein_state
- I-protein_state
length I-protein_state
enzyme B-protein
, O
the O
cleft B-site
abuts O
into O
CtCBM13 B-structure_element
and O
thus O
would O
not O
be O
able O
to O
accommodate O
an O
extended O
polysaccharide B-chemical
chain O
( O
see O
below O
). O
In O
the O
structure B-evidence
of O
CtXyl5A B-mutant
- I-mutant
D I-mutant
, O
the O
four O
modules B-structure_element
form O
a O
three O
- O
leaf O
clover O
- O
like O
structure O
( O
Fig O
. O
5 O
). O
Between O
the O
interfaces B-site
of O
CtGH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
there O
are O
a O
number O
of O
interactions O
that O
maintain O
the O
modules O
in O
a O
fixed O
position O
relative O
to O
each O
other O
. O
The O
interaction O
of O
CtGH5 B-structure_element
and O
CtCBM6 B-structure_element
, O
which O
buries O
a O
substantial O
apolar B-site
solvent I-site
- I-site
exposed I-site
surface I-site
of O
the O
two O
modules O
, O
has O
been O
described O
previously O
. O
The O
polar B-bond_interaction
interactions I-bond_interaction
between O
these O
two O
modules O
comprise O
14 O
hydrogen B-bond_interaction
bonds I-bond_interaction
and O
5 O
salt B-bond_interaction
bridges I-bond_interaction
. O
The O
apolar B-bond_interaction
and I-bond_interaction
polar I-bond_interaction
interactions I-bond_interaction
between O
these O
two O
modules O
likely O
explaining O
why O
they O
do O
not O
fold O
independently O
compared O
with O
other O
glycoside B-protein_type
hydrolases I-protein_type
that O
contain O
CBMs B-structure_element
. O
CtCBM13 B-structure_element
acts O
as O
the O
central B-structure_element
domain I-structure_element
, O
which O
interacts B-protein_state
with I-protein_state
CtGH5 B-structure_element
, O
CtCBM6 B-structure_element
, O
and O
CtFn3 B-structure_element
via O
2 O
, O
5 O
, O
and O
4 O
hydrogen B-bond_interaction
bonds I-bond_interaction
, O
respectively O
, O
burying O
a O
surface O
area O
of O
O
450 O
, O
350 O
, O
and O
500 O
2 O
, O
respectively O
, O
to O
form O
a O
compact B-protein_state
heterotetramer B-oligomeric_state
. O
With O
respect O
to O
the O
CtCBM6 B-site
- I-site
CBM13 I-site
interface I-site
, O
the O
linker B-structure_element
( O
SPISTGTIP B-structure_element
) O
between O
the O
two O
modules B-structure_element
, O
extending O
from O
Ser514 B-residue_name_number
to O
Pro522 B-residue_name_number
, O
adopts O
a O
fixed B-protein_state
conformation I-protein_state
. O
Such O
sequences O
are O
normally O
extremely O
flexible O
; O
however O
, O
the O
two O
Ile B-residue_name
residues O
make O
extensive O
apolar B-bond_interaction
contacts I-bond_interaction
within O
the O
linker B-structure_element
and O
with O
the O
two O
CBMs B-structure_element
, O
leading O
to O
conformational O
stabilization O
. O
The O
interactions O
between O
CtGH5 B-structure_element
and O
the O
two O
CBMs B-structure_element
, O
which O
are O
mediated O
by O
the O
tip O
of O
the O
loop B-structure_element
between O
β B-structure_element
- I-structure_element
7 I-structure_element
and O
α B-structure_element
- I-structure_element
7 I-structure_element
( O
loop B-structure_element
7 I-structure_element
) O
of O
CtGH5 B-structure_element
, O
not O
only O
stabilize O
the O
trimodular B-structure_element
clover I-structure_element
- O
like O
structure O
but O
also O
make O
a O
contribution O
to O
catalytic O
function O
. O
Central O
to O
the O
interactions O
between O
the O
three O
modules B-structure_element
is O
Trp285 B-residue_name_number
, O
which O
is O
intercalated B-bond_interaction
between I-bond_interaction
the O
two O
CBMs B-structure_element
. O
The O
Nϵ O
of O
this O
aromatic O
residue O
makes O
hydrogen B-bond_interaction
bonds I-bond_interaction
with O
the O
backbone O
carbonyl O
of O
Val615 B-residue_name_number
and O
Gly616 B-residue_name_number
in O
CtCBM13 B-structure_element
, O
and O
the O
indole O
ring O
makes O
several O
apolar B-bond_interaction
contacts I-bond_interaction
with O
CtCBM6 B-structure_element
( O
Pro440 B-residue_name_number
, O
Phe489 B-residue_name_number
, O
Gly491 B-residue_name_number
, O
and O
Ala492 B-residue_name_number
) O
( O
Fig O
. O
5 O
). O
Indeed O
, O
loop B-structure_element
7 I-structure_element
is O
completely B-protein_state
disordered I-protein_state
in O
the O
truncated B-protein_state
derivative O
of O
CtXyl5A B-protein
comprising O
CtGH5 B-structure_element
and O
CtCBM6 B-structure_element
, O
demonstrating O
that O
the O
interactions O
with O
CtCBM13 B-structure_element
stabilize O
the O
conformation O
of O
this O
loop B-structure_element
. O
Although O
the O
tip O
of O
loop B-structure_element
7 I-structure_element
does O
not O
directly O
contribute O
to O
the O
topology O
of O
the O
active B-site
site I-site
, O
it O
is O
only O
O
12 O
O
from O
the O
catalytic O
nucleophile O
Glu279 B-residue_name_number
. O
Thus O
, O
any O
perturbation O
of O
the O
loop B-structure_element
( O
through O
the O
removal B-experimental_method
of O
CtCBM13 B-structure_element
) O
is O
likely O
to O
influence O
the O
electrostatic O
and O
apolar O
environment O
of O
the O
catalytic O
apparatus O
, O
which O
could O
explain O
the O
reduction O
in O
activity O
associated O
with O
the O
deletion B-experimental_method
of O
CtCBM13 B-structure_element
. O
Similar O
to O
the O
interactions O
between O
CtCBM6 B-structure_element
and O
CtCBM13 B-structure_element
, O
there O
are O
extensive O
hydrophobic B-bond_interaction
interactions I-bond_interaction
between O
CtCBM13 B-structure_element
and O
CtFn3 B-structure_element
, O
resulting O
in O
very O
little O
flexibility O
between O
these O
modules B-structure_element
. O
As O
stated O
above O
, O
the O
absence B-protein_state
of I-protein_state
CtCBM62 B-structure_element
in O
the O
structure B-evidence
suggests O
that O
the O
module B-structure_element
can O
adopt O
multiple O
positions O
with O
respect O
to O
the O
rest O
of O
the O
protein O
. O
The O
CtCBM62 B-structure_element
, O
by O
binding B-protein_state
to I-protein_state
its O
ligands O
( O
d B-chemical
- I-chemical
Galp I-chemical
and O
l B-chemical
- I-chemical
Arap I-chemical
) O
in O
plant B-taxonomy_domain
cell O
walls O
, O
may O
be O
able O
to O
recruit O
the O
enzyme O
onto O
its O
target O
substrate O
. O
Xylans B-chemical
are O
not O
generally O
thought O
to O
contain O
such O
sugars B-chemical
. O
d B-chemical
- I-chemical
Galp I-chemical
, O
however O
, O
has O
been O
detected O
in O
xylans B-chemical
in O
the O
outer O
layer O
of O
cereal B-taxonomy_domain
grains O
and O
in O
eucalyptus B-taxonomy_domain
trees I-taxonomy_domain
, O
which O
are O
substrates O
used O
by O
CtXyl5A B-protein
. O
Thus O
, O
CtCBM62 B-structure_element
may O
direct O
the O
enzyme O
to O
particularly O
complex O
xylans B-chemical
containing O
d B-chemical
- I-chemical
Galp I-chemical
at O
the O
non O
- O
reducing O
termini O
of O
the O
side O
chains O
, O
consistent O
with O
the O
open B-protein_state
substrate B-site
binding I-site
cleft I-site
of O
the O
arabinoxylanase B-protein_type
that O
is O
optimized O
to O
bind O
highly O
decorated O
forms O
of O
the O
hemicellulose B-chemical
. O
In O
general O
CBMs B-structure_element
have O
little O
influence O
on O
enzyme O
activity O
against O
soluble O
substrates O
but O
have O
a O
significant O
impact O
on O
glycans B-chemical
within O
plant B-taxonomy_domain
cell O
walls O
. O
Thus O
, O
the O
role O
of O
CBM62 B-structure_element
will O
likely O
only O
be O
evident O
against O
insoluble O
composite O
substrates O
. O
Exploring O
GH5 B-protein_type
Subfamily I-protein_type
34 I-protein_type
CtXyl5A B-protein
is O
a O
member O
of O
a O
seven O
- O
protein O
subfamily O
of O
GH5 B-protein_type
, O
GH5_34 B-protein_type
. O
Four O
of O
these O
proteins O
are O
distinct O
, O
whereas O
the O
other O
three O
members O
are O
essentially O
identical O
( O
derived O
from O
different O
strains O
of O
C B-species
. I-species
thermocellum I-species
). O
To O
investigate O
further O
the O
substrate O
specificity O
within O
this O
subfamily O
, O
recombinant O
forms O
of O
three O
members O
of O
GH5_34 B-protein_type
that O
were O
distinct O
from O
CtXyl5A B-protein
were O
generated O
. O
AcGH5 B-protein
has O
a O
similar O
molecular O
architecture O
to O
CtXyl5A B-protein
with O
the O
exception O
of O
an O
additional O
carbohydrate B-structure_element
esterase I-structure_element
family I-structure_element
6 I-structure_element
module I-structure_element
at O
the O
C O
terminus O
( O
Fig O
. O
1 O
). O
The O
GH5_34 B-protein_type
from O
Verrucomicrobiae B-taxonomy_domain
bacterium B-taxonomy_domain
, O
VbGH5 B-protein
, O
contains O
the O
GH5 B-structure_element
- I-structure_element
CBM6 I-structure_element
- I-structure_element
CBM13 I-structure_element
core O
structure O
, O
but O
the O
C O
- O
terminal O
Fn3 B-structure_element
- I-structure_element
CBM62 I-structure_element
- I-structure_element
dockerin I-structure_element
modules O
, O
present O
in O
CtXyl5A B-protein
, O
are O
replaced O
with O
a O
Laminin_3_G B-structure_element
domain I-structure_element
, O
which O
, O
by O
analogy O
to O
homologous O
domains O
in O
other O
proteins O
that O
have O
affinity O
for O
carbohydrates B-chemical
, O
may O
display O
a O
glycan B-chemical
binding O
function O
. O
The O
Verrucomicobiae B-taxonomy_domain
enzyme O
also O
has O
an O
N O
- O
terminal O
GH43 B-protein_type
subfamily I-protein_type
10 I-protein_type
( O
GH43_10 B-protein_type
) O
catalytic B-structure_element
module I-structure_element
. O
The O
fungal B-taxonomy_domain
GH5_34 B-protein_type
, O
GpGH5 B-protein
, O
unlike O
the O
two O
bacterial B-taxonomy_domain
homologs O
, O
comprises O
a O
single O
GH5 B-protein_type
catalytic B-structure_element
module I-structure_element
lacking O
all O
of O
the O
other O
accessory O
modules O
( O
Fig O
. O
1 O
). O
GpGh5 B-protein
is O
particularly O
interesting O
as O
Gonapodya B-species
prolifera I-species
is O
the O
only O
fungus B-taxonomy_domain
of O
the O
several O
hundred O
fungal B-taxonomy_domain
genomes O
that O
encodes O
a O
GH5_34 B-protein_type
enzyme O
. O
In O
fact O
there O
are O
four O
potential O
GH5_34 B-protein_type
sequences O
in O
the O
G B-species
. I-species
prolifera I-species
genome O
, O
all O
of O
which O
show O
high O
sequence O
homology O
to O
Clostridium B-taxonomy_domain
GH5_34 B-protein_type
sequences O
. O
G B-species
. I-species
prolifera I-species
and O
Clostridium B-taxonomy_domain
occupy O
similar O
environments O
, O
suggesting O
that O
the O
GpGH5_34 B-protein
gene O
was O
acquired O
from O
a O
Clostridium B-taxonomy_domain
species O
, O
which O
was O
followed O
by O
duplication O
of O
the O
gene O
in O
the O
fungal B-taxonomy_domain
genome O
. O
The O
sequence O
identity O
of O
the O
GH5_34 B-protein_type
catalytic B-structure_element
modules I-structure_element
with O
CtXyl5A B-protein
ranged O
from O
55 O
to O
80 O
% O
( O
supplemental O
Fig O
. O
S1 O
). O
All O
the O
GH5_34 B-protein_type
enzymes O
were O
active O
on O
the O
arabinoxylans B-chemical
RAX B-chemical
, O
WAX B-chemical
, O
and O
CX B-chemical
but O
displayed O
no O
activity O
on O
BX B-chemical
( O
Table O
1 O
and O
Fig O
. O
6 O
) O
and O
are O
thus O
defined O
as O
arabinoxylanases B-protein_type
. O
The O
limit O
products O
generated O
by O
CtXyl5A B-protein
, O
AcGH5 B-protein
, O
and O
GpGH5 B-protein
comprised O
a O
range O
of O
oligosaccharides B-chemical
with O
some O
high O
molecular O
weight O
material O
. O
The O
oligosaccharides B-chemical
with O
low O
degrees O
of O
polymerization O
were O
absent O
in O
the O
VbGH5 B-protein
reaction O
products O
. O
However O
, O
the O
enzyme O
generated O
a O
large O
amount O
of O
arabinose B-chemical
, O
which O
was O
not O
produced O
by O
the O
other O
arabinoxylanases B-protein_type
. O
Given O
that O
GH43_10 B-protein_type
is O
predominantly O
an O
arabinofuranosidase B-protein_type
subfamily O
of O
GH43 B-protein_type
, O
the O
arabinose B-chemical
generated O
by O
VbGH5 B-protein
is O
likely O
mediated O
by O
the O
N O
- O
terminal O
catalytic B-structure_element
module I-structure_element
( O
see O
below O
). O
Kinetic O
analysis O
showed O
that O
AcGH5 B-protein
displayed O
similar O
activity O
to O
CtXyl5A B-protein
against O
both O
WAX B-chemical
and O
RAX B-chemical
and O
was O
2 O
- O
fold O
less O
active O
against O
CX B-chemical
. O
When O
initially O
measuring O
the O
activity O
of O
wild B-protein_state
type I-protein_state
VbGH5 B-protein
against O
the O
different O
substrates O
, O
no O
clear O
data O
could O
be O
obtained O
, O
regardless O
of O
the O
concentration O
of O
enzyme O
used O
the O
reaction O
appeared O
to O
cease O
after O
a O
few O
minutes O
. O
We O
hypothesized O
that O
the O
N O
- O
terminal O
GH43_10 B-protein_type
rapidly O
removed O
single O
arabinose B-chemical
decorations O
from O
the O
arabinoxylans B-chemical
depleting O
the O
substrate O
available O
to O
the O
arabinoxylanase B-protein_type
, O
explaining O
why O
this O
activity O
was O
short O
lived O
. O
To O
test O
this O
hypothesis O
, O
the O
conserved B-protein_state
catalytic O
base O
( O
Asp45 B-residue_name_number
) O
of O
the O
GH43_10 B-structure_element
module O
of O
VbGH5 B-protein
was O
substituted B-experimental_method
with I-experimental_method
alanine B-residue_name
, O
which O
is O
predicted O
to O
inactivate O
this O
catalytic B-structure_element
module I-structure_element
. O
The O
D45A B-mutant
mutant B-protein_state
did O
not O
produce O
arabinose B-chemical
consistent O
with O
the O
arabinofuranosidase B-protein_type
activity O
displayed O
by O
the O
GH43_10 B-structure_element
module O
in O
the O
wild B-protein_state
type I-protein_state
enzyme O
( O
Fig O
. O
6 O
). O
The O
kinetics B-evidence
of O
the O
GH5_34 B-protein_type
arabinoxylanase B-protein_type
catalytic B-structure_element
module I-structure_element
was O
now O
measurable O
, O
and O
activities O
were O
determined O
to O
be O
between O
O
6 O
- O
and O
10 O
- O
fold O
lower O
than O
that O
of O
CtXyl5A B-protein
. O
Interestingly O
, O
the O
fungal B-taxonomy_domain
arabinoxylanase B-protein_type
displays O
the O
highest O
activities O
against O
WAX B-chemical
and O
RAX B-chemical
, O
O
4 O
- O
and O
6 O
- O
fold O
higher O
, O
respectively O
, O
than O
CtXyl5A B-protein
; O
however O
, O
there O
is O
very O
little O
difference O
in O
the O
activity O
between O
the O
eukaryotic B-taxonomy_domain
and O
prokaryotic B-taxonomy_domain
enzymes O
against O
CX B-chemical
. O
Attempts O
to O
express O
individual O
modules O
of O
a O
variety O
of O
truncations O
of O
AcGH5 B-protein
and O
VbGH5 B-protein
were O
unsuccessful O
. O
This O
may O
indicate O
that O
the O
individual O
modules O
can O
only O
fold O
correctly O
when O
incorporated O
into O
the O
full B-protein_state
- I-protein_state
length I-protein_state
enzyme O
, O
demonstrating O
the O
importance O
of O
intermodule O
interactions O
to O
maintain O
the O
structural O
integrity O
of O
these O
enzymes O
. O
Products O
profile O
generated O
of O
GH5_34 B-protein_type
enzymes O
. O
The O
enzymes O
at O
1 O
μm O
were O
incubated B-experimental_method
with O
the O
four O
different O
xylans B-chemical
at O
1 O
% O
in O
50 O
mm O
sodium O
phosphate O
buffer O
for O
16 O
h O
at O
37 O
° O
C O
( O
GpGH5 B-protein
, O
VbGH5 B-protein
, O
and O
AcGH5 B-protein
) O
or O
60 O
° O
C O
. O
The O
limit O
products O
were O
separated O
by O
TLC B-experimental_method
. O
The O
xylooligosaccharide B-chemical
standards O
( O
X O
) O
are O
indicated O
by O
their O
degrees O
of O
polymerization O
. O
A O
characteristic O
feature O
of O
enzymes O
that O
attack O
the O
plant B-taxonomy_domain
cell O
wall O
is O
their O
complex O
molecular O
architecture O
. O
The O
CBMs B-structure_element
in O
these O
enzymes O
generally O
play O
a O
role O
in O
substrate O
targeting O
and O
are O
appended O
to O
the O
catalytic B-structure_element
modules I-structure_element
through O
flexible B-structure_element
linker I-structure_element
sequences I-structure_element
. O
CtXyl5A B-protein
provides O
a O
rare O
visualization O
of O
the O
structure B-evidence
of O
multiple O
modules O
within O
a O
single O
enzyme O
. O
The O
central O
feature O
of O
these O
data O
is O
the O
structural O
role O
played O
by O
two O
of O
the O
CBMs B-structure_element
, O
CtCBM6 B-structure_element
and O
CtCBM13 B-structure_element
, O
in O
maintaining O
the O
active B-protein_state
conformation O
of O
the O
catalytic B-structure_element
module I-structure_element
, O
CtGH5 B-structure_element
. O
The O
crystallographic B-evidence
data I-evidence
described O
here O
are O
supported O
by O
biochemical O
data O
showing O
either O
that O
these O
two O
modules O
do O
not O
bind O
to O
glycans B-chemical
( O
CtCBM13 B-structure_element
) O
or O
that O
the O
recognition O
of O
the O
non O
- O
reducing O
end O
of O
xylan B-chemical
or O
cellulose B-chemical
chains O
( O
CtCBM6 B-structure_element
) O
is O
unlikely O
to O
be O
biologically O
significant O
. O
It O
should O
be O
emphasized O
, O
however O
, O
that O
glycan B-chemical
binding O
and O
substrate O
targeting O
may O
only O
be O
evident O
in O
the O
full B-protein_state
- I-protein_state
length I-protein_state
enzyme O
acting O
on O
highly O
complex O
structures O
such O
as O
the O
plant B-taxonomy_domain
cell O
wall O
, O
as O
observed O
recently O
by O
a O
CBM46 B-structure_element
module O
in O
the O
Bacillus B-taxonomy_domain
xyloglucanase B-protein_type
/ O
mixed B-protein_type
linked I-protein_type
glucanase I-protein_type
BhCel5B B-protein
. O
CtXyl5A B-protein
is O
a O
member O
of O
GH5 B-protein_type
that O
contains O
6644 O
members O
. O
CtXyl5A B-protein
is O
a O
member O
of O
subfamily O
GH5_34 B-protein_type
. O
Despite O
differences O
in O
sequence O
identity O
all O
of O
the O
homologs O
were O
shown O
to O
be O
arabinoxylanases B-protein_type
. O
Consistent O
with O
the O
conserved O
substrate O
specificity O
, O
all O
members O
of O
GH5_34 B-protein_type
contained O
the O
specificity B-site
determinants I-site
Glu68 B-residue_name_number
, O
Tyr92 B-residue_name_number
, O
and O
Asn139 B-residue_name_number
, O
which O
make O
critical O
interactions O
with O
the O
xylose B-chemical
or O
arabinose B-chemical
in O
the O
B-site
2 I-site
* I-site
subsite I-site
, O
which O
are O
1 O
, O
3 O
- O
linked O
to O
the O
xylose B-chemical
positioned O
in O
the O
active B-site
site I-site
. O
The O
presence O
of O
a O
CBM62 B-structure_element
in O
CtXyl5A B-protein
and O
AcGH5 B-protein
suggests O
that O
these O
enzymes O
target O
highly O
complex O
xylans B-chemical
that O
contain O
d B-chemical
- I-chemical
galactose I-chemical
in O
their O
side O
chains O
. O
The O
absence B-protein_state
of I-protein_state
a O
O
non O
- O
structural O
O
CBM B-structure_element
in O
GpGH5 B-protein
may O
indicate O
that O
this O
arabinoxylanase B-protein_type
is O
designed O
to O
target O
simpler O
arabinoxylans B-chemical
present O
in O
the O
endosperm O
of O
cereals B-taxonomy_domain
. O
Although O
the O
characterization O
of O
all O
members O
of O
GH5_34 B-protein_type
suggests O
that O
this O
subfamily O
is O
monospecific O
, O
differences O
in O
specificity O
are O
observed O
in O
other O
subfamilies O
of O
GHs B-protein_type
including O
GH43 B-protein_type
and O
GH5 B-protein_type
. O
Thus O
, O
as O
new O
members O
of O
GH5_34 B-protein_type
are O
identified O
from O
genomic O
sequence O
data O
and O
subsequently O
characterized O
, O
the O
specificity O
of O
this O
family O
may O
require O
reinterpretation O
. O
An O
intriguing O
feature O
of O
VbGH5 B-protein
is O
that O
the O
limited O
products O
generated O
by O
this O
enzymes O
are O
much O
larger O
than O
those O
produced O
by O
the O
other O
arabinoxylanases B-protein_type
. O
This O
suggests O
that O
although O
arabinose B-chemical
decorations O
contribute O
to O
enzyme O
specificity O
( O
VbGH5 B-protein
is O
not O
active O
on O
xylans B-chemical
lacking O
arabinose B-chemical
side O
chains O
), O
the O
enzyme O
requires O
other O
specificity O
determinants O
that O
occur O
less O
frequently O
in O
arabinoxylans B-chemical
. O
This O
has O
some O
resonance O
with O
a O
recently O
described O
GH98 B-protein_type
xylanase B-protein_type
that O
also O
exploits O
specificity O
determinants O
that O
occur O
infrequently O
and O
are O
only O
evident O
in O
highly O
complex O
xylans B-chemical
( O
e O
. O
g O
. O
CX B-chemical
). O
To O
conclude O
, O
this O
study O
provides O
the O
molecular O
basis O
for O
the O
specificity O
displayed O
by O
arabinoxylanases B-protein_type
. O
Substrate O
specificity O
is O
dominated O
by O
the O
pocket B-site
that O
binds O
single O
arabinose B-chemical
or O
xylose B-chemical
side O
chains O
. O
The O
open B-protein_state
xylan B-site
binding I-site
cleft I-site
explains O
why O
the O
enzyme O
is O
able O
to O
attack O
highly O
decorated O
forms O
of O
the O
hemicellulose B-chemical
. O
It O
is O
also O
evident O
that O
appending O
additional O
catalytic B-structure_element
modules I-structure_element
and O
CBMs B-structure_element
onto O
the O
core O
components O
of O
these O
enzymes O
generates O
bespoke O
arabinoxylanases B-protein_type
with O
activities O
optimized O
for O
specific O
functions O
. O
The O
specificities O
of O
the O
arabinoxylanases B-protein_type
described O
here O
are O
distinct O
from O
the O
classical O
endo B-protein_type
- I-protein_type
xylanases I-protein_type
and O
thus O
have O
the O
potential O
to O
contribute O
to O
the O
toolbox O
of O
biocatalysts O
required O
by O
industries O
that O
exploit O
the O
plant B-taxonomy_domain
cell O
wall O
as O
a O
sustainable O
substrate O
. O
Data B-evidence
collection I-evidence
and I-evidence
refinement I-evidence
statistics I-evidence
CtXyl5A B-mutant
- I-mutant
D I-mutant
GH5 B-complex_assembly
- I-complex_assembly
CBM6 I-complex_assembly
- I-complex_assembly
Arap I-complex_assembly
GH5 B-complex_assembly
- I-complex_assembly
CBM6 I-complex_assembly
- I-complex_assembly
Xylp I-complex_assembly
GH5 B-complex_assembly
- I-complex_assembly
CBM6 I-complex_assembly
- I-complex_assembly
( I-complex_assembly
Araf I-complex_assembly
- I-complex_assembly
Xylp4 I-complex_assembly
) I-complex_assembly
Data O
collection O
Source O
ESRF O
- O
ID14 O
- O
1 O
Diamond O
I04 O
O
1 O
Diamond O
I24 O
Diamond O
I02 O
Wavelength O
( O
Å O
) O
0 O
. O
9334 O
0 O
. O
9173 O
0 O
. O
9772 O
0 O
. O
9791 O
Space O
group O
P21212 O
P212121 O
P212121 O
P212121 O
Cell O
dimensions O
a O
, O
b O
, O
c O
( O
Å O
) O
147 O
. O
4 O
, O
191 O
. O
7 O
, O
50 O
. O
7 O
67 O
. O
1 O
, O
72 O
. O
4 O
, O
109 O
. O
1 O
67 O
. O
9 O
, O
72 O
. O
5 O
, O
109 O
. O
5 O
76 O
. O
3 O
, O
123 O
. O
2 O
, O
125 O
. O
4 O
α O
, O
β O
, O
γ O
(°) O
90 O
, O
90 O
, O
90 O
90 O
, O
90 O
, O
90 O
90 O
, O
90 O
, O
90 O
90 O
, O
90 O
, O
90 O
No O
. O
of O
measured O
reflections O
244 O
, O
475 O
( O
29 O
, O
324 O
) O
224 O
, O
842 O
( O
11 O
, O
281 O
) O
152 O
, O
004 O
( O
4 O
, O
996 O
) O
463 O
, O
237 O
( O
23 O
, O
068 O
) O
No O
. O
of O
independent O
reflections O
42246 O
( O
5 O
, O
920 O
) O
63 O
, O
523 O
( O
3 O
, O
175 O
) O
42 O
, O
716 O
( O
2 O
, O
334 O
) O
140 O
, O
288 O
( O
6 O
, O
879 O
) O
Resolution O
( O
Å O
) O
50 O
. O
70 O
O
2 O
. O
64 O
( O
2 O
. O
78 O
O
2 O
. O
64 O
) O
44 O
. O
85 O
O
1 O
. O
65 O
( O
1 O
. O
68 O
O
1 O
. O
65 O
) O
45 O
. O
16 O
O
1 O
. O
90 O
( O
1 O
. O
94 O
O
1 O
. O
90 O
) O
48 O
. O
43 O
O
1 O
. O
65 O
( O
1 O
. O
68 O
O
1 O
. O
65 O
) O
Rmerge O
(%) O
16 O
. O
5 O
( O
69 O
. O
5 O
) O
6 O
. O
7 O
( O
65 O
. O
1 O
) O
2 O
. O
8 O
( O
8 O
. O
4 O
) O
5 O
. O
7 O
( O
74 O
. O
9 O
) O
CC1 O
/ O
2 O
0 O
. O
985 O
( O
0 O
. O
478 O
) O
0 O
. O
998 O
( O
0 O
. O
594 O
) O
0 O
. O
999 O
( O
0 O
. O
982 O
) O
0 O
. O
998 O
( O
0 O
. O
484 O
) O
I O
/ O
σI O
8 O
. O
0 O
( O
2 O
. O
0 O
) O
13 O
( O
1 O
. O
6 O
) O
26 O
. O
6 O
( O
8 O
. O
0 O
) O
11 O
. O
2 O
( O
1 O
. O
6 O
) O
Completeness O
(%) O
98 O
. O
5 O
( O
96 O
. O
4 O
) O
98 O
. O
5 O
( O
99 O
. O
4 O
) O
98 O
. O
6 O
( O
85 O
. O
0 O
) O
98 O
. O
8 O
( O
99 O
. O
4 O
) O
Redundancy O
5 O
. O
8 O
( O
5 O
. O
0 O
) O
3 O
. O
5 O
( O
3 O
. O
6 O
) O
3 O
. O
6 O
( O
2 O
. O
1 O
) O
3 O
. O
3 O
( O
3 O
. O
4 O
) O
Refinement O
Rwork B-evidence
/ O
Rfree B-evidence
23 O
. O
7 O
/ O
27 O
. O
8 O
12 O
. O
2 O
/ O
17 O
. O
0 O
12 O
. O
9 O
/ O
16 O
. O
1 O
14 O
. O
5 O
/ O
19 O
. O
9 O
No O
. O
atoms O
Protein O
5446 O
3790 O
3729 O
7333 O
Ligand O
19 O
20 O
20 O
92 O
Water O
227 O
579 O
601 O
923 O
B O
- O
factors O
Protein O
41 O
. O
6 O
17 O
. O
8 O
15 O
. O
8 O
21 O
. O
0 O
Ligand O
65 O
. O
0 O
19 O
. O
4 O
24 O
. O
2 O
39 O
. O
5 O
Water O
35 O
. O
4 O
38 O
. O
5 O
32 O
. O
2 O
37 O
. O
6 O
R O
. O
m O
. O
s O
deviations O
Bond O
lengths O
( O
Å O
) O
0 O
. O
008 O
0 O
. O
015 O
0 O
. O
012 O
0 O
. O
012 O
Bond O
angles O
(°) O
1 O
. O
233 O
1 O
. O
502 O
1 O
. O
624 O
1 O
. O
554 O
Protein O
Data O
Bank O
code O
5G56 O
5LA0 O
5LA1 O
2LA2 O