The O Mechanism O by O Which O Arabinoxylanases B-protein_type Can O Recognize O Highly B-protein_state Decorated I-protein_state Xylans B-chemical * O The O enzymatic O degradation O of O plant B-taxonomy_domain cell O walls O is O an O important O biological O process O of O increasing O environmental O and O industrial O significance O . O Xylan B-chemical , O a O major O component O of O the O plant B-taxonomy_domain cell O wall O , O consists O of O a O backbone O of O β B-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical xylose I-chemical ( O Xylp B-chemical ) O units O that O are O often O decorated O with O arabinofuranose B-chemical ( O Araf B-chemical ) O side O chains O . O A O large O penta B-protein_type - I-protein_type modular I-protein_type enzyme I-protein_type , O CtXyl5A B-protein , O was O shown O previously O to O specifically O target O arabinoxylans B-chemical . O Here O we O report O the O crystal B-evidence structure I-evidence of O the O arabinoxylanase B-protein_type and O the O enzyme O in B-protein_state complex I-protein_state with I-protein_state ligands B-chemical . O The O data O showed O that O four O of O the O protein O modules O adopt O a O rigid O structure O , O which O stabilizes O the O catalytic B-structure_element domain I-structure_element . O The O C O - O terminal O non B-structure_element - I-structure_element catalytic I-structure_element carbohydrate I-structure_element binding I-structure_element module I-structure_element could O not O be O observed O in O the O crystal B-evidence structure I-evidence , O suggesting O positional O flexibility O . O The O structure B-evidence of O the O enzyme O in B-protein_state complex I-protein_state with I-protein_state Xylp B-chemical - I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical Xylp I-chemical - I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical Xylp I-chemical -[ I-chemical α I-chemical - I-chemical 1 I-chemical , I-chemical 3 I-chemical - I-chemical Araf I-chemical ]- I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical Xylp I-chemical showed O that O the O Araf B-chemical decoration O linked O O3 O to O the O xylose B-chemical in O the O active B-site site I-site is O located O in O the O pocket B-site (− O 2 B-site * I-site subsite I-site ) O that O abuts O onto O the O catalytic B-site center I-site . O The O − B-site 2 I-site * I-site subsite I-site can O also O bind O to O Xylp B-chemical and O Arap B-chemical , O explaining O why O the O enzyme O can O utilize O xylose B-chemical and O arabinose B-chemical as O specificity O determinants O . O Alanine B-experimental_method substitution I-experimental_method of O Glu68 B-residue_name_number , O Tyr92 B-residue_name_number , O or O Asn139 B-residue_name_number , O which O interact O with O arabinose B-chemical and O xylose B-chemical side O chains O at O the O − B-site 2 I-site * I-site subsite I-site , O abrogates O catalytic O activity O . O Distal O to O the O active B-site site I-site , O the O xylan B-chemical backbone O makes O limited O apolar O contacts O with O the O enzyme O , O and O the O hydroxyls O are O solvent B-protein_state - I-protein_state exposed I-protein_state . O This O explains O why O CtXyl5A B-protein is O capable O of O hydrolyzing O xylans B-chemical that O are O extensively O decorated O and O that O are O recalcitrant O to O classic O endo B-protein_type - I-protein_type xylanase I-protein_type attack O . O The O plant B-taxonomy_domain cell O wall O is O an O important O biological O substrate O . O This O complex O composite O structure O is O depolymerized O by O microorganisms B-taxonomy_domain that O occupy O important O highly O competitive O ecological O niches O , O whereas O the O process O makes O an O important O contribution O to O the O carbon O cycle O . O Given O that O the O plant B-taxonomy_domain cell O wall O is O the O most O abundant O source O of O renewable O organic O carbon O on O the O planet O , O this O macromolecular O substrate O has O substantial O industrial O potential O . O An O example O of O the O chemical O complexity O of O the O plant B-taxonomy_domain cell O wall O is O provided O by O xylan B-chemical , O which O is O the O major O hemicellulosic O component O . O This O polysaccharide B-chemical comprises O a O backbone O of O β B-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical d I-chemical - I-chemical xylose I-chemical residues O in O their O pyranose B-chemical configuration O ( O Xylp B-chemical ) O that O are O decorated O at O O2 O with O 4 B-chemical - I-chemical O I-chemical - I-chemical methyl I-chemical - I-chemical d I-chemical - I-chemical glucuronic I-chemical acid I-chemical ( O GlcA B-chemical ) O and O at O O2 O and O / O or O O3 O with O α B-chemical - I-chemical l I-chemical - I-chemical arabinofuranose I-chemical ( O Araf B-chemical ) O residues O , O whereas O the O polysaccharide B-chemical can O also O be O extensively O acetylated O . O In O addition O , O the O Araf B-chemical side O chain O decorations O can O also O be O esterified O to O ferulic B-chemical acid I-chemical that O , O in O some O species O , O provide O a O chemical O link O between O hemicellulose B-chemical and O lignin B-chemical . O The O precise O structure O of O xylans B-chemical varies O between O plant B-taxonomy_domain species O , O in O particular O in O different O tissues O and O during O cellular O differentiation O . O In O specialized O plant B-taxonomy_domain tissues O , O such O as O the O outer O layer O of O cereal B-taxonomy_domain grains O , O xylans B-chemical are O extremely O complex O , O and O side O chains O may O comprise O a O range O of O other O sugars B-chemical including O l B-chemical - I-chemical and I-chemical d I-chemical - I-chemical galactose I-chemical and O β B-chemical - I-chemical and I-chemical α I-chemical - I-chemical Xylp I-chemical units O . O Indeed O , O in O these O cereal B-taxonomy_domain brans O , O xylans B-chemical have O very O few O backbone O Xylp B-chemical units O that O are O undecorated O , O and O the O side O chains O can O contain O up O to O six O sugars B-chemical . O Reflecting O the O chemical O and O physical O complexity O of O the O plant B-taxonomy_domain cell O wall O , O microorganisms B-taxonomy_domain that O utilize O these O composite O structures O express O a O large O number O of O polysaccharide B-protein_type - I-protein_type degrading I-protein_type enzymes I-protein_type , O primarily O glycoside B-protein_type hydrolases I-protein_type , O but O also O polysaccharide B-protein_type lyases I-protein_type , O carbohydrate B-protein_type esterases I-protein_type , O and O lytic B-protein_type polysaccharide I-protein_type monooxygenases I-protein_type . O These O carbohydrate B-protein_type active I-protein_type enzymes I-protein_type are O grouped O into O sequence O - O based O families O in O the O CAZy O database O . O With O respect O to O xylan B-chemical degradation O , O the O backbone O of O simple O xylans B-chemical is O hydrolyzed O by O endo B-protein_type - I-protein_type acting I-protein_type xylanases I-protein_type , O the O majority O of O which O are O located O in O glycoside B-protein_type hydrolase I-protein_type ( O GH B-protein_type ) O 5 B-protein_type families O GH10 B-protein_type and O GH11 B-protein_type , O although O they O are O also O present O in O GH8 B-protein_type . O The O extensive O decoration O of O the O xylan B-chemical backbone O generally O restricts O the O capacity O of O these O enzymes O to O attack O the O polysaccharide B-chemical prior O to O removal O of O the O side O chains O by O a O range O of O α B-protein_type - I-protein_type glucuronidases I-protein_type , O α B-protein_type - I-protein_type arabinofuranosidases I-protein_type , O and O esterases B-protein_type . O Two O xylanases B-protein_type , O however O , O utilize O the O side O chains O as O essential O specificity O determinants O and O thus O target O decorated O forms O of O the O hemicellulose B-chemical . O The O GH30 B-protein_type glucuronoxylanases B-protein_type require O the O Xylp B-chemical bound B-protein_state at I-protein_state the O − B-site 2 I-site to O contain O a O GlcA B-chemical side O chain O ( O the O scissile O bond O targeted O by O glycoside B-protein_type hydrolases I-protein_type is O between O subsites B-site − I-site 1 I-site and I-site + I-site 1 I-site , O and O subsites B-site that O extend O toward O the O non O - O reducing O and O reducing O ends O of O the O substrate O are O assigned O increasing O negative O and O positive O numbers O , O respectively O ). O The O GH5 B-protein_type arabinoxylanase B-protein_type ( O CtXyl5A B-protein ) O derived O from O Clostridium B-species thermocellum I-species displays O an O absolute O requirement O for O xylans B-chemical that O contain O Araf B-chemical side O chains O . O In O this O enzyme O , O the O key O specificity O determinant O is O the O Araf B-chemical appended O to O O3 O of O the O Xylp B-chemical bound B-protein_state in I-protein_state the O active B-site site I-site (− O 1 B-site subsite I-site ). O The O reaction O products O generated O from O arabinoxylans B-chemical , O however O , O suggest O that O Araf B-chemical can O be O accommodated O at O subsites B-site distal O to O the O active B-site site I-site . O CtXyl5A B-protein is O a O multimodular O enzyme O containing O , O in O addition O to O the O GH5 B-protein_type catalytic B-structure_element module I-structure_element ( O CtGH5 B-structure_element ); O three O non B-structure_element - I-structure_element catalytic I-structure_element carbohydrate I-structure_element binding I-structure_element modules I-structure_element ( O CBMs B-structure_element ) O belonging O to O families O 6 B-protein_type ( O CtCBM6 B-structure_element ), O 13 B-protein_type ( O CtCBM13 B-structure_element ), O and O 62 B-protein_type ( O CtCBM62 B-structure_element ); O fibronectin B-protein_type type I-protein_type 3 I-protein_type ( O Fn3 B-structure_element ) O domain O ; O and O a O C O - O terminal O dockerin B-structure_element domain O Fig O . O 1 O . O Previous O studies O of O Fn3 B-structure_element domains O have O indicated O that O they O might O function O as O ligand B-structure_element - I-structure_element binding I-structure_element modules I-structure_element , O as O a O compact O form O of O peptide O linkers O or O spacers O between O other O domains O , O as O cellulose B-structure_element - I-structure_element disrupting I-structure_element modules I-structure_element , O or O as O proteins O that O help O large O enzyme O complexes O remain O soluble O . O The O dockerin B-structure_element domain O recruits O the O enzyme O into O the O cellulosome B-complex_assembly , O a O multienzyme O plant B-taxonomy_domain cell O wall O degrading O complex O presented O on O the O surface O of O C B-species . I-species thermocellum I-species . O CtCBM6 B-structure_element stabilizes O CtGH5 B-structure_element , O and O CtCBM62 B-structure_element binds O to O d B-chemical - I-chemical galactopyranose I-chemical and O l B-chemical - I-chemical arabinopyranose I-chemical . O The O function O of O the O CtCBM13 B-structure_element and O Fn3 B-structure_element modules O remains O unclear O . O This O report O exploits O the O crystal B-evidence structure I-evidence of O mature B-protein_state CtXyl5A B-protein lacking B-protein_state its O C O - O terminal O dockerin B-structure_element domain O ( O CtXyl5A B-mutant - I-mutant Doc I-mutant ), O and O the O enzyme O in B-protein_state complex I-protein_state with I-protein_state ligands B-chemical , O to O explore O the O mechanism O of O substrate O specificity O . O The O data O show O that O the O plasticity O in O substrate O recognition O enables O the O enzyme O to O hydrolyze O highly O complex O xylans B-chemical that O are O not O accessible O to O classical O GH10 B-protein_type and O GH11 B-protein_type endo B-protein_type - I-protein_type xylanases I-protein_type . O Molecular O architecture O of O GH5_34 B-protein_type enzymes O . O Modules O prefaced O by O GH B-structure_element , O CBM B-structure_element , O or O CE B-structure_element are O modules O in O the O indicated O glycoside B-protein_type hydrolase I-protein_type , O carbohydrate B-structure_element binding I-structure_element module I-structure_element , O or O carbohydrate B-protein_type esterase I-protein_type families O , O respectively O . O Laminin_3_G B-structure_element domain O belongs O to O the O concanavalin B-protein_type A I-protein_type lectin I-protein_type superfamily I-protein_type , O and O FN3 B-structure_element denotes O a O fibronectin B-structure_element type I-structure_element 3 I-structure_element domain I-structure_element . O Segments O labeled O D O are O dockerin B-structure_element domains O . O Substrate O Specificity O of O CtXyl5A B-protein Previous O studies O showed O that O CtXyl5A B-protein is O an O arabinoxylan B-protein_type - I-protein_type specific I-protein_type xylanase I-protein_type that O generates O xylooligosaccharides B-chemical with O an O arabinose B-chemical linked O O3 O to O the O reducing O end O xylose B-chemical . O The O enzyme O is O active O against O both O wheat B-taxonomy_domain and O rye B-taxonomy_domain arabinoxylans B-chemical ( O abbreviated O as O WAX B-chemical and O RAX B-chemical , O respectively O ). O It O was O proposed O that O arabinose B-chemical decorations O make O productive O interactions O with O a O pocket B-site (− O 2 B-site *) I-site that O is O abutted O onto O the O active B-site site I-site or O − B-site 1 I-site subsite I-site . O Arabinose B-chemical side O chains O of O the O other O backbone O xylose B-chemical units O in O the O oligosaccharides B-chemical generated O by O CtXyl5A B-protein were O essentially O random O . O These O data O suggest O that O O3 O , O and O possibly O O2 O , O on O the O xylose B-chemical residues O at O subsites B-site distal O to O the O active B-site site I-site and O − B-site 2 I-site * I-site pocket I-site are O solvent B-protein_state - I-protein_state exposed I-protein_state , O implying O that O the O enzyme O can O access O highly O decorated O xylans B-chemical . O To O test O this O hypothesis O , O the O activity O of O CtXyl5A B-protein against O xylans B-chemical from O cereal B-taxonomy_domain brans O was O assessed O . O CtXyl5a B-protein was O incubated B-experimental_method with O a O range O of O xylans B-chemical for O 16 O h O at O 60 O ° O C O , O and O the O limit O products O were O visualized O by O TLC B-experimental_method . O These O xylans B-chemical are O highly O decorated O not O only O with O Araf B-chemical and O GlcA B-chemical units O but O also O with O l B-chemical - I-chemical Gal I-chemical , O d B-chemical - I-chemical Gal I-chemical , O and O d B-chemical - I-chemical Xyl I-chemical . O Indeed O , O very O few O xylose B-chemical units O in O the O backbone O of O bran O xylans B-chemical lack O side O chains O . O The O data O presented O in O Table O 1 O showed O that O CtXyl5A B-protein was O active O against O corn B-taxonomy_domain bran O xylan B-chemical ( O CX B-chemical ). O In O contrast O typical O endo B-protein_type - I-protein_type xylanases I-protein_type from O GH10 B-protein_type and O GH11 B-protein_type were O unable O to O attack O CX B-chemical , O reflecting O the O lack B-protein_state of I-protein_state undecorated O xylose B-chemical units O in O the O backbone O ( O the O active B-site site I-site of O these O enzymes O can O only O bind B-protein_state to I-protein_state non O - O substituted O xylose B-chemical residues O ). O The O limit O products O generated O by O CtXyl5A B-protein from O CX B-chemical consisted O of O an O extensive O range O of O oligosaccharides B-chemical . O These O data O support O the O view O that O in O subsites B-site out O with O the O active B-site site I-site the O O2 O and O O3 O groups O of O the O bound O xylose B-chemical units O are O solvent B-protein_state - I-protein_state exposed I-protein_state and O will O thus O tolerate O decoration O . O Kinetics B-evidence of O GH5_34 B-protein_type arabinoxylanases B-protein_type Enzyme O Variant O kcat B-evidence / O Km B-evidence WAX B-chemical RAX B-chemical CX B-chemical min O − O 1mg O − O 1ml O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element - I-structure_element Fn3 I-structure_element - I-structure_element CBM62 I-structure_element 800 O ND O 460 O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element - I-structure_element Fn3 I-structure_element 1 O , O 232 O ND O 659 O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element 1 O , O 307 O ND O 620 O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element 488 O ND O 102 O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element : O E68A B-mutant NA O NA O NA O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element : O Y92A B-mutant NA O NA O NA O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element : O N135A B-mutant 260 O ND O ND O CtXyl5A B-protein CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element : O N139A B-mutant NA O NA O NA O AcGH5 B-protein Wild B-protein_state type I-protein_state 628 O 1 O , O 641 O 289 O GpGH5 B-protein Wild B-protein_state type I-protein_state 2 O , O 600 O 9 O , O 986 O 314 O VbGH5 B-protein Wild B-protein_state type I-protein_state ND O ND O ND O VbGH5 B-protein D45A B-mutant 102 O 203 O 23 O To O explore O whether O substrate O bound B-protein_state only I-protein_state at I-protein_state − B-site 2 I-site * I-site and O − B-site 1 I-site in O the O negative B-site subsites I-site was O hydrolyzed O by O CtXyl5A B-protein , O the O limit O products O of O CX B-chemical digested O by O the O arabinoxylanase B-protein_type were O subjected O to O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method using O a O Bio O - O Gel O P O - O 2 O , O and O the O smallest O oligosaccharides B-chemical ( O largest O elution O volume O ) O were O chosen O for O further O study O . O HPAEC B-experimental_method analysis O of O the O smallest O oligosaccharide B-chemical fraction O ( O pool O 4 O ) O contained O two O species O with O retention O times O of O 14 O . O 0 O min O ( O oligosaccharide B-chemical 1 O ) O and O 20 O . O 8 O min O ( O oligosaccharide B-chemical 2 O ) O ( O Fig O . O 2 O ). O Positive B-experimental_method mode I-experimental_method electrospray I-experimental_method mass I-experimental_method spectrometry I-experimental_method showed O that O pool O 4 O contained O exclusively O molecular O ions O with O a O m O / O z O = O 305 O [ O M O + O Na O ]+, O which O corresponds O to O a O pentose B-chemical - O pentose B-chemical disaccharide B-chemical ( O molecular O mass O = O 282 O Da O ) O as O a O sodium O ion O adduct O , O whereas O a O dimer O of O the O disaccharide B-chemical with O a O sodium O adduct O ( O m O / O z O = O 587 O [ O 2M O + O Na O ]+) O was O also O evident O . O The O monosaccharide O composition O of O pool O 4 O determined O by O TFA B-experimental_method hydrolysis I-experimental_method contained O xylose B-chemical and O arabinose B-chemical in O a O 3 O : O 1 O ratio O . O This O suggests O that O the O two O oligosaccharides B-chemical consist O of O two O disaccharides B-chemical : O one O consisting O of O two O xylose B-chemical residues O and O the O other O consisting O of O an O arabinose B-chemical linked O to O a O xylose B-chemical . O Treatment O of O pool O 4 O with O the O nonspecific B-protein_type arabinofuranosidase I-protein_type , O CjAbf51A B-protein , O resulted O in O the O loss O of O oligosaccharide B-chemical 2 O and O the O production O of O both O xylose B-chemical and O arabinose B-chemical , O indicative O of O a O disaccharide B-chemical of O xylose B-chemical and O arabinose B-chemical . O Incubation O of O pool O 4 O with O a O β B-protein_type - I-protein_type 1 I-protein_type , I-protein_type 3 I-protein_type - I-protein_type xylosidase I-protein_type ( O XynB B-protein ) O converted O oligosaccharide B-chemical 1 O into O xylose B-chemical , O demonstrating O that O this O molecule O is O the O disaccharide B-chemical β B-chemical - I-chemical 1 I-chemical , I-chemical 3 I-chemical - I-chemical xylobiose I-chemical . O This O view O is O supported O by O the O inability O of O a O β B-protein_type - I-protein_type 1 I-protein_type , I-protein_type 4 I-protein_type - I-protein_type specific I-protein_type xylosidase I-protein_type to O hydrolyze O oligosaccharide B-chemical 1 O or O oligosaccharide B-chemical 2 O ( O data O not O shown O ). O The O crucial O importance O of O occupancy O of O the O − B-site 2 I-site * I-site pocket I-site for O catalytic O competence O is O illustrated O by O the O inability O of O the O enzyme O to O hydrolyze O linear O β B-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical xylooligosaccharides I-chemical . O The O generation O of O Araf B-chemical - I-chemical Xylp I-chemical and O Xyl B-chemical - I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 3 I-chemical - I-chemical Xyl I-chemical as O reaction O products O demonstrates O that O occupancy O of O the O − B-site 2 I-site subsite I-site is O not O essential O for O catalytic O activity O , O which O is O in O contrast O to O all O endo B-protein_type - I-protein_type acting I-protein_type xylanases I-protein_type where O this O subsite B-site plays O a O critical O role O in O enzyme O activity O . O Indeed O , O the O data O demonstrate O that O − B-site 2 I-site * I-site plays O a O more O important O role O in O productive O substrate O binding O than O the O − B-site 2 I-site subsite I-site . O Unfortunately O , O the O inability O to O generate O highly O purified O ( B-chemical Xyl I-chemical - I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical ) I-chemical n I-chemical -[ I-chemical β I-chemical - I-chemical 1 I-chemical , I-chemical 3 I-chemical - I-chemical Xyl I-chemical / I-chemical Ara I-chemical ]- I-chemical Xyl I-chemical oligosaccharides B-chemical from O arabinoxylans B-chemical prevented O the O precise O binding O energies O at O the O negative O subsites O to O be O determined O . O Identification O of O the O disaccharide B-chemical reaction O products O generated O from O CX B-chemical . O The O smallest O reaction O products O were O purified O by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method and O analyzed O by O HPAEC B-experimental_method ( O A O ) O and O positive O mode O ESI B-experimental_method - I-experimental_method MS I-experimental_method ( O B O ), O respectively O . O The O samples O were O treated O with O a O nonspecific B-protein_type arabinofuranosidase I-protein_type ( O CjAbf51A B-protein ) O and O a O GH3 B-protein_type xylosidase I-protein_type ( O XynB B-protein ) O that O targeted O β O - O 1 O , O 3 O - O xylosidic O bonds O . O X O , O xylose B-chemical ; O A O , O arabinose B-chemical . O The O m O / O z O = O 305 O species O denotes O a O pentose B-chemical disaccharide B-chemical as O a O sodium O adduct O [ O M O + O Na O ]+, O whereas O the O m O / O z O = O 587 O signal O corresponds O to O an O ESI B-experimental_method - I-experimental_method MS I-experimental_method dimer O of O the O pentose B-chemical disaccharide B-chemical also O as O a O sodium O adduct O [ O 2M O + O Na O ]+. O Crystal B-evidence Structure I-evidence of O the O Catalytic B-structure_element Module I-structure_element of O CtXyl5A B-protein in B-protein_state Complex I-protein_state with I-protein_state Ligands B-chemical To O understand O the O structural O basis O for O the O biochemical O properties O of O CtXyl5A B-protein , O the O crystal B-evidence structure I-evidence of O the O enzyme O with O ligands O that O occupy O the O substrate B-site binding I-site cleft I-site and O the O critical O − B-site 2 I-site * I-site subsite I-site were O sought O . O The O data O presented O in O Fig O . O 3A O show O the O structure B-evidence of O the O CtXyl5A B-protein derivative O CtGH5 B-structure_element - I-structure_element CtCBM6 I-structure_element in B-protein_state complex I-protein_state with I-protein_state arabinose B-chemical bound B-protein_state in I-protein_state the O − B-site 2 I-site * I-site pocket I-site . O Interestingly O , O the O bound B-protein_state arabinose B-chemical was O in O the O pyranose B-chemical conformation O rather O than O in O its O furanose B-chemical form O found O in O arabinoxylans B-chemical . O O1 O was O facing O toward O the O active B-site site I-site − B-site 1 I-site subsite I-site , O indicative O of O the O bound B-protein_state arabinose B-chemical being O in O the O right O orientation O to O be O linked O to O the O xylan B-chemical backbone O via O an O α O - O 1 O , O 3 O linkage O . O As O discussed O on O below O , O the O axial O O4 O of O the O Arap B-chemical did O not O interact O with O the O − B-site 2 I-site * I-site subsite I-site , O suggesting O that O the O pocket B-site might O be O capable O of O binding O a O xylose B-chemical molecule O . O Indeed O , O soaking B-experimental_method apo B-protein_state crystals B-evidence with O xylose B-chemical showed O that O the O pentose B-chemical sugar B-chemical also O bound B-protein_state in I-protein_state the O − B-site 2 I-site * I-site subsite I-site in O its O pyranose B-chemical conformation O ( O Fig O . O 3B O ). O These O crystal B-evidence structures I-evidence support O the O biochemical O data O presented O above O showing O that O the O enzyme O generated O β B-chemical - I-chemical 1 I-chemical , I-chemical 3 I-chemical - I-chemical xylobiose I-chemical from O CX B-chemical , O which O would O require O the O disaccharide B-chemical to O bind O at O the O − B-site 1 I-site and I-site − I-site 2 I-site * I-site subsites I-site . O A O third O product O complex O was O generated O by O co B-experimental_method - I-experimental_method crystallizing I-experimental_method the O nucleophile B-protein_state inactive I-protein_state mutant B-protein_state CtGH5E279S B-mutant - O CtCBM6 B-structure_element with O a O WAX B-chemical - O derived O oligosaccharide B-chemical ( O Fig O . O 3C O ). O The O data O revealed O a O pentasaccharide B-chemical bound B-protein_state to I-protein_state the O enzyme O , O comprising O β B-chemical - I-chemical 1 I-chemical , I-chemical 4 I-chemical - I-chemical xylotetraose I-chemical with O an O Araf B-chemical linked O α O - O 1 O , O 3 O to O the O reducing O end O xylose B-chemical . O The O xylotetraose B-chemical was O positioned O in O subsites B-site − I-site 1 I-site to I-site − I-site 4 I-site and O the O Araf B-chemical in O the O − B-site 2 I-site * I-site pocket I-site . O Analysis O of O the O three O structures B-evidence showed O that O O1 O , O O2 O , O O3 O , O and O the O endocyclic O oxygen O occupied O identical O positions O in O the O Arap B-chemical , O Araf B-chemical , O and O Xylp B-chemical ligands O bound B-protein_state in I-protein_state the O − B-site 2 I-site * I-site subsite I-site and O thus O made O identical O interactions O with O the O pocket B-site . O O1 O makes O a O polar B-bond_interaction contact I-bond_interaction with O Nδ2 O of O Asn139 B-residue_name_number , O O2 O is O within O hydrogen B-bond_interaction bonding I-bond_interaction distance O with O Oδ1 O of O Asn139 B-residue_name_number and O the O backbone O N O of O Asn135 B-residue_name_number , O and O O3 O interacts O with O the O N O of O Gly136 B-residue_name_number and O Oϵ2 O of O Glu68 B-residue_name_number . O Although O O4 O of O Arap B-chemical does O not O make O a O direct O interaction O with O the O enzyme O , O O4 O and O O5 O of O Xylp B-chemical and O Araf B-chemical , O respectively O , O form O hydrogen B-bond_interaction bonds I-bond_interaction with O Oϵ1 O of O Glu68 B-residue_name_number . O Finally O Tyr92 B-residue_name_number makes O apolar O parallel B-bond_interaction interactions I-bond_interaction with O the O pyranose B-chemical or O furanose B-chemical rings O of O the O three O sugars O . O Representation O of O the O residues O involved O in O the O ligands O recognition O at O the O − B-site 2 I-site * I-site subsite I-site . O Interacting O residues O are O represented O as O stick O in O blue O , O and O the O catalytic B-site residues I-site and O the O mutated B-experimental_method glutamate B-residue_name ( O into O a O serine B-residue_name ) O are O in O magenta O . O A O , O CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element in B-protein_state complex I-protein_state with I-protein_state an O arabinopyranose B-chemical . O B O , O CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element in B-protein_state complex I-protein_state with I-protein_state a O xylopyranose B-chemical . O C O , O CtGH5E279S B-mutant - O CBM6 B-structure_element in B-protein_state complex I-protein_state with I-protein_state a O pentasaccharide B-chemical ( O β1 B-chemical , I-chemical 4 I-chemical - I-chemical xylotetraose I-chemical with O an O l B-chemical - I-chemical Araf I-chemical linked O α1 O , O 3 O to O the O reducing O end O xylose B-chemical ). O The O xylan B-chemical backbone O is O shown O transparently O for O more O clarity O . O Densities B-evidence shown O in O blue O are O RefMac O maximum B-evidence - I-evidence likelihood I-evidence σA I-evidence - I-evidence weighted I-evidence 2Fo I-evidence − I-evidence Fc I-evidence at I-evidence 1 I-evidence . I-evidence 5 I-evidence σ I-evidence . O The O importance O of O the O interactions O between O the O ligands O and O the O side O chains O of O the O residues O in O the O − B-site 2 I-site * I-site pocket I-site were O evaluated O by O alanine B-experimental_method substitution I-experimental_method of O these O amino O acids O . O The O mutants B-protein_state E68A B-mutant , O Y92A B-mutant , O and O N139A B-mutant were O all O inactive B-protein_state ( O Table O 1 O ), O demonstrating O the O importance O of O the O interactions O of O these O residues O with O the O substrate O and O reinforcing O the O critical O role O the O − B-site 2 I-site * I-site subsite I-site plays O in O the O activity O of O the O enzyme O . O N135A B-mutant retained O wild B-protein_state type I-protein_state activity O because O the O O2 O of O the O sugars O interacts O with O the O backbone O N O of O Asn135 B-residue_name_number and O not O with O the O side O chain O . O Because O the O hydroxyls O of O Xylp B-chemical or O Araf B-chemical in O the O − B-site 2 I-site * I-site pocket I-site are O not O solvent B-protein_state - I-protein_state exposed I-protein_state , O the O active B-site site I-site of O the O arabinoxylanase B-protein_type can O only O bind O to O xylose B-chemical residues O that O contain O a O single O xylose B-chemical or O arabinose B-chemical O3 O decoration O . O This O may O explain O why O the O kcat B-evidence / O Km B-evidence for O CtXyl5A B-protein against O WAX B-chemical was O 2 O - O fold O higher O than O against O CX B-chemical ( O Table O 1 O ). O WAX B-chemical is O likely O to O have O a O higher O concentration O of O single O Araf B-chemical decorations O compared O with O CX B-chemical and O thus O contain O more O substrate O available O to O the O arabinoxylanase B-protein_type . O In O the O active B-site site I-site of O CtXyl5A B-protein the O α B-chemical - I-chemical d I-chemical - I-chemical Xylp I-chemical , O which O is O in O its O relaxed O 4C1 O conformation O , O makes O the O following O interactions O with O the O enzyme O ( O Fig O . O 4 O , O A O – O C O ): O O1 O hydrogen B-bond_interaction bonds I-bond_interaction with O the O Nδ1 O of O His253 B-residue_name_number and O Oϵ2 O of O Glu171 B-residue_name_number ( O catalytic O acid O - O base O ) O and O makes O a O possible O weak O polar B-bond_interaction contact I-bond_interaction with O the O OH O of O Tyr255 B-residue_name_number and O Oγ O of O Ser279 B-residue_name_number ( O mutation O of O the O catalytic O nucleophile O ); O O2 O hydrogen B-bond_interaction bonds I-bond_interaction with O Nδ2 O of O Asn170 B-residue_name_number and O OH O of O Tyr92 B-residue_name_number . O O3 O ( O O1 O of O the O Araf B-chemical at O the O − B-site 2 I-site * I-site subsite I-site ) O makes O a O polar B-bond_interaction contact I-bond_interaction with O Nδ2 O of O Asn139 B-residue_name_number ; O the O endocyclic O oxygen O hydrogens B-bond_interaction bonds I-bond_interaction with O the O OH O of O Tyr255 B-residue_name_number . O The O Xylp B-chemical in O the O active B-site site I-site makes O strong O parallel B-bond_interaction apolar I-bond_interaction interactions I-bond_interaction with O Phe310 B-residue_name_number . O Substrate O recognition O in O the O active B-site site I-site is O conserved B-protein_state between O CtXyl5A B-protein and O the O closest O GH5 B-protein_type structural O homolog O , O the O endoglucanase B-protein_type BaCel5A B-protein ( O PDB O code O 1qi2 O ) O as O noted O previously O . O Comparison O of O the O ligand O recognition O at O the O distal O negative B-site subsites I-site between O CtGH5E279S B-mutant - O CBM6 B-structure_element , O the O cellulase B-protein_type BaCel5A B-protein , O and O the O xylanase B-protein_type GH10 B-protein_type . O A O – O C O show O CtGH5E279S B-mutant - O CBM6 O is O in B-protein_state complex I-protein_state with I-protein_state a O pentasaccharide B-chemical ( O β1 B-chemical , I-chemical 4 I-chemical - I-chemical xylotetraose I-chemical with O an O l B-chemical - I-chemical Araf I-chemical linked O α1 O , O 3 O to O the O reducing O end O xylose B-chemical ). O A O , O Poseview O representation O highlighting O the O hydrogen B-bond_interaction bonding I-bond_interaction and O the O hydrophobic B-bond_interaction interactions I-bond_interaction that O occur O in O the O negative B-site subsites I-site . O C O , O density B-evidence of O the O ligand O shown O in O blue O is O RefMac O maximum B-evidence - I-evidence likelihood I-evidence σA I-evidence - I-evidence weighted I-evidence 2Fo I-evidence − I-evidence Fc I-evidence at I-evidence 1 I-evidence . I-evidence 5 I-evidence σ I-evidence . O D O and O E O display O BaCel5A B-protein in B-protein_state complex I-protein_state with I-protein_state deoxy B-chemical - I-chemical 2 I-chemical - I-chemical fluoro I-chemical - I-chemical β I-chemical - I-chemical d I-chemical - I-chemical cellotrioside I-chemical ( O PDB O code O 1qi2 O ), O and O F O and O G O show O CmXyn10B B-protein in B-protein_state complex I-protein_state with I-protein_state a O xylotriose B-chemical ( O PDB O code O 1uqy O ). O B O , O D O , O and O F O are O surface O representations O ( O CtGH5E279S B-mutant - O CBM6 O in O gray O , O BaCel5A B-protein in O cyan O , O and O the O xylanase B-protein_type GH10 B-protein_type in O light O brown O ). O The O black O dashes O represent O the O hydrogen B-bond_interaction bonds I-bond_interaction . O The O capacity O of O CtXyl5A B-protein to O act O on O the O highly O decorated O xylan B-chemical CX B-chemical indicates O that O O3 O and O possibly O O2 O of O the O backbone O Xylp B-chemical units O are O solvent B-protein_state - I-protein_state exposed I-protein_state . O This O is O consistent O with O the O interaction O of O the O xylotetraose B-chemical backbone O with O the O enzyme O distal O to O the O active B-site site I-site . O A O surface O representation O of O the O enzyme O ( O Fig O . O 4B O ) O shows O that O O3 O and O O2 O of O xylose B-chemical units O at O subsites B-site − I-site 2 I-site to I-site − I-site 4 I-site are O solvent B-protein_state - I-protein_state exposed I-protein_state and O are O thus O available O for O decoration O . O Indeed O , O these O pyranose B-chemical sugars B-chemical make O very O weak O apolar B-bond_interaction interactions I-bond_interaction with O the O arabinoxylanase B-protein_type . O At O − B-site 2 I-site , O Xylp B-chemical makes O planar B-bond_interaction apolar I-bond_interaction interactions I-bond_interaction with O the O Araf B-chemical bound B-protein_state to I-protein_state the O − B-site 2 I-site * I-site subsite I-site ( O Fig O . O 4C O ). O Xylp B-chemical at O subsites B-site − I-site 2 I-site and I-site − I-site 3 I-site , O respectively O , O make O weak O hydrophobic B-bond_interaction contact I-bond_interaction with O Val318 B-residue_name_number , O the O − B-site 3 I-site Xylp B-chemical makes O planar B-bond_interaction apolar I-bond_interaction interactions I-bond_interaction with O Ala137 B-residue_name_number , O whereas O the O xylose B-chemical at O − B-site 4 I-site forms O parallel B-bond_interaction apolar I-bond_interaction contacts I-bond_interaction with O Trp69 B-residue_name_number . O Comparison O of O the O distal O negative B-site subsites I-site of O CtXyl5A B-protein with O BaCel5A B-protein and O a O typical O GH10 B-protein_type xylanase B-protein_type ( O CmXyn10B B-protein , O PDB O code O 1uqy O ) O highlights O the O paucity O of O interactions O between O the O arabinoxylanase B-protein_type and O its O substrate O out O with O the O active B-site site I-site ( O Fig O . O 4 O ). O Thus O , O the O cellulase B-protein_type contains O three O negative B-site subsites I-site and O the O sugars B-chemical bound B-protein_state in I-protein_state the O − B-site 2 I-site and I-site − I-site 3 I-site subsites I-site make O a O total O of O 9 O polar B-bond_interaction interactions I-bond_interaction with O the O enzyme O ( O Fig O . O 4 O , O D O and O E O ). O The O GH10 B-protein_type xylanase B-protein_type also O contains O a O − B-site 2 I-site subsite I-site that O , O similar O to O the O cellulase B-protein_type , O makes O numerous O interactions O with O the O substrate O ( O Fig O . O 4 O , O F O and O G O ). O The O Influence O of O the O Modular O Architecture O of O CtXyl5A B-protein on O Catalytic O Activity O CtXyl5A B-protein , O in O addition O to O its O catalytic B-structure_element module I-structure_element , O contains O three O CBMs B-structure_element ( O CtCBM6 B-structure_element , O CtCBM13 B-structure_element , O and O CtCBM62 B-structure_element ) O and O a O fibronectin B-structure_element domain I-structure_element ( O CtFn3 B-structure_element ). O A O previous O study O showed O that O although O the O CBM6 B-structure_element bound B-protein_state in I-protein_state an O exo B-protein_state - I-protein_state mode I-protein_state to O xylo B-chemical - I-chemical and I-chemical cellulooligosaccharides I-chemical , O the O primary O role O of O this O module O was O to O stabilize O the O structure O of O the O GH5 B-protein_type catalytic B-structure_element module I-structure_element . O To O explore O the O contribution O of O the O other O non B-structure_element - I-structure_element catalytic I-structure_element modules I-structure_element to O CtXyl5A B-protein function O , O the O activity O of O a O series O of O truncated B-protein_state derivatives O of O the O arabinoxylanase B-protein_type were O assessed O . O The O data O in O Table O 1 O show O that O removal B-experimental_method of I-experimental_method CtCBM62 B-structure_element caused O a O modest O increase O in O activity O against O both O WAX B-chemical and O CX B-chemical , O whereas O deletion B-experimental_method of I-experimental_method the O Fn3 B-structure_element domain O had O no O further O impact O on O catalytic O performance O . O Truncation B-experimental_method of O CtCBM13 B-structure_element , O however O , O caused O a O 4 O – O 5 O - O fold O reduction O in O activity O against O both O substrates O . O Members O of O CBM13 B-structure_element have O been O shown O to O bind O to O xylans B-chemical , O mannose B-chemical , O and O galactose B-chemical residues O in O complex B-chemical glycans I-chemical , O hinting O that O the O function O of O CtCBM13 B-structure_element is O to O increase O the O proximity O of O substrate O to O the O catalytic B-structure_element module I-structure_element of O CtXyl5A B-protein . O Binding B-experimental_method studies I-experimental_method , O however O , O showed O that O CtCBM13 B-structure_element displayed O no O affinity O for O a O range O of O relevant O glycans B-chemical including O WAX B-chemical , O CX B-chemical , O xylose B-chemical , O mannose B-chemical , O galactose B-chemical , O and O birchwood B-chemical xylan I-chemical ( O BX B-chemical ) O ( O data O not O shown O ). O It O would O appear O , O therefore O , O that O CtCBM13 B-structure_element makes O a O structural O contribution O to O the O function O of O CtXyl5A B-protein . O Crystal B-evidence Structure I-evidence of O CtXyl5A B-mutant - I-mutant D I-mutant To O explore O further O the O role O of O the O non B-structure_element - I-structure_element catalytic I-structure_element modules I-structure_element in O CtXyl5A B-protein the O crystal B-evidence structure I-evidence of O CtXyl5A B-protein extending O from O CtGH5 B-structure_element to O CtCBM62 B-structure_element was O sought O . O To O obtain O a O construct O that O could O potentially O be O crystallized B-experimental_method , O the O protein O was O generated O without B-protein_state the O C O - O terminal O dockerin B-structure_element domain O because O it O is O known O to O be O unstable O and O prone O to O cleavage O . O Using O this O construct O ( O CtXyl5A B-mutant - I-mutant D I-mutant ) O the O crystal B-evidence structure I-evidence of O the O arabinoxylanase B-protein_type was O determined O by O molecular B-experimental_method replacement I-experimental_method to O a O resolution O of O 2 O . O 64 O Å O with O Rwork B-evidence and O Rfree B-evidence at O 23 O . O 7 O % O and O 27 O . O 8 O %, O respectively O . O The O structure B-evidence comprises O a O continuous O polypeptide O extending O from O Ala36 B-residue_range to I-residue_range Trp742 I-residue_range displaying O four O modules O GH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element - I-structure_element Fn3 I-structure_element . O Although O there O was O some O electron B-evidence density I-evidence for O CtCBM62 B-structure_element , O it O was O not O sufficient O to O confidently O build O the O module O ( O Fig O . O 5 O ). O Further O investigation O of O the O crystal B-evidence packing I-evidence revealed O a O large O solvent B-site channel I-site adjacent O to O the O area O the O CBM62 B-structure_element occupies O . O We O postulate O that O the O reason O for O the O poor O electron B-evidence density I-evidence is O due O to O the O CtCBM62 B-structure_element being O mobile B-protein_state compared O with O the O rest O of O the O protein O . O The O structures B-evidence of O CtGH5 B-structure_element and O CtCBM6 B-structure_element have O been O described O previously O . O Surface O representation O of O the O tetra O - O modular O arabinoxylanase B-protein_type and O zoom O view O on O the O CtGH5 B-structure_element loop B-structure_element . O The O blue O module O is O the O CtGH5 B-structure_element catalytic B-structure_element domain I-structure_element , O the O green O module O corresponds O to O the O CtCBM6 B-structure_element , O the O yellow O module O is O the O CtCBM13 B-structure_element , O and O the O salmon O module O is O the O fibronectin B-structure_element domain I-structure_element . O The O CtGH5 B-structure_element loop B-structure_element is O stabilized O between O the O CtCBM6 B-structure_element and O the O CtCBM13 B-structure_element modules O . O CtCBM13 B-structure_element extends O from O Gly567 B-residue_range to I-residue_range Pro648 I-residue_range . O Typical O of O CBM13 B-protein_type proteins O CtCBM13 B-structure_element displays O a O β B-structure_element - I-structure_element trefoil I-structure_element fold I-structure_element comprising O the O canonical O pseudo O 3 O - O fold O symmetry O with O a O 3 B-structure_element - I-structure_element fold I-structure_element repeating I-structure_element unit I-structure_element of O 40 B-residue_range – I-residue_range 50 I-residue_range amino I-residue_range acid I-residue_range residues O characteristic O of O the O Ricin B-protein_type superfamily I-protein_type . O Each O repeat B-structure_element contains O two O pairs O of O antiparallel B-structure_element β I-structure_element - I-structure_element strands I-structure_element . O A O Dali B-experimental_method search I-experimental_method revealed O structural O homologs O from O the O CBM13 B-protein_type family O with O an O root B-evidence mean I-evidence square I-evidence deviation I-evidence less O than O 2 O . O 0 O Å O and O sequence O identities O of O less O than O 20 O % O that O include O the O functionally O relevant O homologs O C B-species . I-species thermocellum I-species exo B-protein_type - I-protein_type β I-protein_type - I-protein_type 1 I-protein_type , I-protein_type 3 I-protein_type - I-protein_type galactanase I-protein_type ( O PDB O code O 3vsz O ), O Streptomyces B-species avermitilis I-species β B-protein_type - I-protein_type l I-protein_type - I-protein_type arabinopyranosidase I-protein_type ( O PDB O code O 3a21 O ), O Streptomyces B-species lividans I-species xylanase B-protein 10A I-protein ( O PDB O code O , O 1mc9 O ), O and O Streptomyces B-species olivaceoviridis I-species E I-species - I-species 86 I-species xylanase B-protein 10A I-protein ( O PDB O code O 1v6v O ). O The O Fn3 B-structure_element module O displays O a O typical O β B-structure_element - I-structure_element sandwich I-structure_element fold I-structure_element with O the O two O sheets B-structure_element comprising O , O primarily O , O three O antiparallel B-structure_element strands I-structure_element in O the O order O β1 B-structure_element - I-structure_element β2 I-structure_element - I-structure_element β5 I-structure_element in O β B-structure_element - I-structure_element sheet I-structure_element 1 I-structure_element and O β4 B-structure_element - I-structure_element β3 I-structure_element - I-structure_element β6 I-structure_element in O β B-structure_element - I-structure_element sheet I-structure_element 2 I-structure_element . O Although O β B-structure_element - I-structure_element sheet I-structure_element 2 I-structure_element presents O a O cleft B-site - O like O topology O , O typical O of O endo B-protein_type - I-protein_type binding I-protein_type CBMs I-protein_type , O the O surface O lacks O aromatic O residues O that O play O a O key O role O in O ligand O recognition O , O and O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state enzyme B-protein , O the O cleft B-site abuts O into O CtCBM13 B-structure_element and O thus O would O not O be O able O to O accommodate O an O extended O polysaccharide B-chemical chain O ( O see O below O ). O In O the O structure B-evidence of O CtXyl5A B-mutant - I-mutant D I-mutant , O the O four O modules B-structure_element form O a O three O - O leaf O clover O - O like O structure O ( O Fig O . O 5 O ). O Between O the O interfaces B-site of O CtGH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element there O are O a O number O of O interactions O that O maintain O the O modules O in O a O fixed O position O relative O to O each O other O . O The O interaction O of O CtGH5 B-structure_element and O CtCBM6 B-structure_element , O which O buries O a O substantial O apolar B-site solvent I-site - I-site exposed I-site surface I-site of O the O two O modules O , O has O been O described O previously O . O The O polar B-bond_interaction interactions I-bond_interaction between O these O two O modules O comprise O 14 O hydrogen B-bond_interaction bonds I-bond_interaction and O 5 O salt B-bond_interaction bridges I-bond_interaction . O The O apolar B-bond_interaction and I-bond_interaction polar I-bond_interaction interactions I-bond_interaction between O these O two O modules O likely O explaining O why O they O do O not O fold O independently O compared O with O other O glycoside B-protein_type hydrolases I-protein_type that O contain O CBMs B-structure_element . O CtCBM13 B-structure_element acts O as O the O central B-structure_element domain I-structure_element , O which O interacts B-protein_state with I-protein_state CtGH5 B-structure_element , O CtCBM6 B-structure_element , O and O CtFn3 B-structure_element via O 2 O , O 5 O , O and O 4 O hydrogen B-bond_interaction bonds I-bond_interaction , O respectively O , O burying O a O surface O area O of O ∼ O 450 O , O 350 O , O and O 500 O Å2 O , O respectively O , O to O form O a O compact B-protein_state heterotetramer B-oligomeric_state . O With O respect O to O the O CtCBM6 B-site - I-site CBM13 I-site interface I-site , O the O linker B-structure_element ( O SPISTGTIP B-structure_element ) O between O the O two O modules B-structure_element , O extending O from O Ser514 B-residue_name_number to O Pro522 B-residue_name_number , O adopts O a O fixed B-protein_state conformation I-protein_state . O Such O sequences O are O normally O extremely O flexible O ; O however O , O the O two O Ile B-residue_name residues O make O extensive O apolar B-bond_interaction contacts I-bond_interaction within O the O linker B-structure_element and O with O the O two O CBMs B-structure_element , O leading O to O conformational O stabilization O . O The O interactions O between O CtGH5 B-structure_element and O the O two O CBMs B-structure_element , O which O are O mediated O by O the O tip O of O the O loop B-structure_element between O β B-structure_element - I-structure_element 7 I-structure_element and O α B-structure_element - I-structure_element 7 I-structure_element ( O loop B-structure_element 7 I-structure_element ) O of O CtGH5 B-structure_element , O not O only O stabilize O the O trimodular B-structure_element clover I-structure_element - O like O structure O but O also O make O a O contribution O to O catalytic O function O . O Central O to O the O interactions O between O the O three O modules B-structure_element is O Trp285 B-residue_name_number , O which O is O intercalated B-bond_interaction between I-bond_interaction the O two O CBMs B-structure_element . O The O Nϵ O of O this O aromatic O residue O makes O hydrogen B-bond_interaction bonds I-bond_interaction with O the O backbone O carbonyl O of O Val615 B-residue_name_number and O Gly616 B-residue_name_number in O CtCBM13 B-structure_element , O and O the O indole O ring O makes O several O apolar B-bond_interaction contacts I-bond_interaction with O CtCBM6 B-structure_element ( O Pro440 B-residue_name_number , O Phe489 B-residue_name_number , O Gly491 B-residue_name_number , O and O Ala492 B-residue_name_number ) O ( O Fig O . O 5 O ). O Indeed O , O loop B-structure_element 7 I-structure_element is O completely B-protein_state disordered I-protein_state in O the O truncated B-protein_state derivative O of O CtXyl5A B-protein comprising O CtGH5 B-structure_element and O CtCBM6 B-structure_element , O demonstrating O that O the O interactions O with O CtCBM13 B-structure_element stabilize O the O conformation O of O this O loop B-structure_element . O Although O the O tip O of O loop B-structure_element 7 I-structure_element does O not O directly O contribute O to O the O topology O of O the O active B-site site I-site , O it O is O only O ∼ O 12 O Å O from O the O catalytic O nucleophile O Glu279 B-residue_name_number . O Thus O , O any O perturbation O of O the O loop B-structure_element ( O through O the O removal B-experimental_method of O CtCBM13 B-structure_element ) O is O likely O to O influence O the O electrostatic O and O apolar O environment O of O the O catalytic O apparatus O , O which O could O explain O the O reduction O in O activity O associated O with O the O deletion B-experimental_method of O CtCBM13 B-structure_element . O Similar O to O the O interactions O between O CtCBM6 B-structure_element and O CtCBM13 B-structure_element , O there O are O extensive O hydrophobic B-bond_interaction interactions I-bond_interaction between O CtCBM13 B-structure_element and O CtFn3 B-structure_element , O resulting O in O very O little O flexibility O between O these O modules B-structure_element . O As O stated O above O , O the O absence B-protein_state of I-protein_state CtCBM62 B-structure_element in O the O structure B-evidence suggests O that O the O module B-structure_element can O adopt O multiple O positions O with O respect O to O the O rest O of O the O protein O . O The O CtCBM62 B-structure_element , O by O binding B-protein_state to I-protein_state its O ligands O ( O d B-chemical - I-chemical Galp I-chemical and O l B-chemical - I-chemical Arap I-chemical ) O in O plant B-taxonomy_domain cell O walls O , O may O be O able O to O recruit O the O enzyme O onto O its O target O substrate O . O Xylans B-chemical are O not O generally O thought O to O contain O such O sugars B-chemical . O d B-chemical - I-chemical Galp I-chemical , O however O , O has O been O detected O in O xylans B-chemical in O the O outer O layer O of O cereal B-taxonomy_domain grains O and O in O eucalyptus B-taxonomy_domain trees I-taxonomy_domain , O which O are O substrates O used O by O CtXyl5A B-protein . O Thus O , O CtCBM62 B-structure_element may O direct O the O enzyme O to O particularly O complex O xylans B-chemical containing O d B-chemical - I-chemical Galp I-chemical at O the O non O - O reducing O termini O of O the O side O chains O , O consistent O with O the O open B-protein_state substrate B-site binding I-site cleft I-site of O the O arabinoxylanase B-protein_type that O is O optimized O to O bind O highly O decorated O forms O of O the O hemicellulose B-chemical . O In O general O CBMs B-structure_element have O little O influence O on O enzyme O activity O against O soluble O substrates O but O have O a O significant O impact O on O glycans B-chemical within O plant B-taxonomy_domain cell O walls O . O Thus O , O the O role O of O CBM62 B-structure_element will O likely O only O be O evident O against O insoluble O composite O substrates O . O Exploring O GH5 B-protein_type Subfamily I-protein_type 34 I-protein_type CtXyl5A B-protein is O a O member O of O a O seven O - O protein O subfamily O of O GH5 B-protein_type , O GH5_34 B-protein_type . O Four O of O these O proteins O are O distinct O , O whereas O the O other O three O members O are O essentially O identical O ( O derived O from O different O strains O of O C B-species . I-species thermocellum I-species ). O To O investigate O further O the O substrate O specificity O within O this O subfamily O , O recombinant O forms O of O three O members O of O GH5_34 B-protein_type that O were O distinct O from O CtXyl5A B-protein were O generated O . O AcGH5 B-protein has O a O similar O molecular O architecture O to O CtXyl5A B-protein with O the O exception O of O an O additional O carbohydrate B-structure_element esterase I-structure_element family I-structure_element 6 I-structure_element module I-structure_element at O the O C O terminus O ( O Fig O . O 1 O ). O The O GH5_34 B-protein_type from O Verrucomicrobiae B-taxonomy_domain bacterium B-taxonomy_domain , O VbGH5 B-protein , O contains O the O GH5 B-structure_element - I-structure_element CBM6 I-structure_element - I-structure_element CBM13 I-structure_element core O structure O , O but O the O C O - O terminal O Fn3 B-structure_element - I-structure_element CBM62 I-structure_element - I-structure_element dockerin I-structure_element modules O , O present O in O CtXyl5A B-protein , O are O replaced O with O a O Laminin_3_G B-structure_element domain I-structure_element , O which O , O by O analogy O to O homologous O domains O in O other O proteins O that O have O affinity O for O carbohydrates B-chemical , O may O display O a O glycan B-chemical binding O function O . O The O Verrucomicobiae B-taxonomy_domain enzyme O also O has O an O N O - O terminal O GH43 B-protein_type subfamily I-protein_type 10 I-protein_type ( O GH43_10 B-protein_type ) O catalytic B-structure_element module I-structure_element . O The O fungal B-taxonomy_domain GH5_34 B-protein_type , O GpGH5 B-protein , O unlike O the O two O bacterial B-taxonomy_domain homologs O , O comprises O a O single O GH5 B-protein_type catalytic B-structure_element module I-structure_element lacking O all O of O the O other O accessory O modules O ( O Fig O . O 1 O ). O GpGh5 B-protein is O particularly O interesting O as O Gonapodya B-species prolifera I-species is O the O only O fungus B-taxonomy_domain of O the O several O hundred O fungal B-taxonomy_domain genomes O that O encodes O a O GH5_34 B-protein_type enzyme O . O In O fact O there O are O four O potential O GH5_34 B-protein_type sequences O in O the O G B-species . I-species prolifera I-species genome O , O all O of O which O show O high O sequence O homology O to O Clostridium B-taxonomy_domain GH5_34 B-protein_type sequences O . O G B-species . I-species prolifera I-species and O Clostridium B-taxonomy_domain occupy O similar O environments O , O suggesting O that O the O GpGH5_34 B-protein gene O was O acquired O from O a O Clostridium B-taxonomy_domain species O , O which O was O followed O by O duplication O of O the O gene O in O the O fungal B-taxonomy_domain genome O . O The O sequence O identity O of O the O GH5_34 B-protein_type catalytic B-structure_element modules I-structure_element with O CtXyl5A B-protein ranged O from O 55 O to O 80 O % O ( O supplemental O Fig O . O S1 O ). O All O the O GH5_34 B-protein_type enzymes O were O active O on O the O arabinoxylans B-chemical RAX B-chemical , O WAX B-chemical , O and O CX B-chemical but O displayed O no O activity O on O BX B-chemical ( O Table O 1 O and O Fig O . O 6 O ) O and O are O thus O defined O as O arabinoxylanases B-protein_type . O The O limit O products O generated O by O CtXyl5A B-protein , O AcGH5 B-protein , O and O GpGH5 B-protein comprised O a O range O of O oligosaccharides B-chemical with O some O high O molecular O weight O material O . O The O oligosaccharides B-chemical with O low O degrees O of O polymerization O were O absent O in O the O VbGH5 B-protein reaction O products O . O However O , O the O enzyme O generated O a O large O amount O of O arabinose B-chemical , O which O was O not O produced O by O the O other O arabinoxylanases B-protein_type . O Given O that O GH43_10 B-protein_type is O predominantly O an O arabinofuranosidase B-protein_type subfamily O of O GH43 B-protein_type , O the O arabinose B-chemical generated O by O VbGH5 B-protein is O likely O mediated O by O the O N O - O terminal O catalytic B-structure_element module I-structure_element ( O see O below O ). O Kinetic O analysis O showed O that O AcGH5 B-protein displayed O similar O activity O to O CtXyl5A B-protein against O both O WAX B-chemical and O RAX B-chemical and O was O 2 O - O fold O less O active O against O CX B-chemical . O When O initially O measuring O the O activity O of O wild B-protein_state type I-protein_state VbGH5 B-protein against O the O different O substrates O , O no O clear O data O could O be O obtained O , O regardless O of O the O concentration O of O enzyme O used O the O reaction O appeared O to O cease O after O a O few O minutes O . O We O hypothesized O that O the O N O - O terminal O GH43_10 B-protein_type rapidly O removed O single O arabinose B-chemical decorations O from O the O arabinoxylans B-chemical depleting O the O substrate O available O to O the O arabinoxylanase B-protein_type , O explaining O why O this O activity O was O short O lived O . O To O test O this O hypothesis O , O the O conserved B-protein_state catalytic O base O ( O Asp45 B-residue_name_number ) O of O the O GH43_10 B-structure_element module O of O VbGH5 B-protein was O substituted B-experimental_method with I-experimental_method alanine B-residue_name , O which O is O predicted O to O inactivate O this O catalytic B-structure_element module I-structure_element . O The O D45A B-mutant mutant B-protein_state did O not O produce O arabinose B-chemical consistent O with O the O arabinofuranosidase B-protein_type activity O displayed O by O the O GH43_10 B-structure_element module O in O the O wild B-protein_state type I-protein_state enzyme O ( O Fig O . O 6 O ). O The O kinetics B-evidence of O the O GH5_34 B-protein_type arabinoxylanase B-protein_type catalytic B-structure_element module I-structure_element was O now O measurable O , O and O activities O were O determined O to O be O between O ∼ O 6 O - O and O 10 O - O fold O lower O than O that O of O CtXyl5A B-protein . O Interestingly O , O the O fungal B-taxonomy_domain arabinoxylanase B-protein_type displays O the O highest O activities O against O WAX B-chemical and O RAX B-chemical , O ∼ O 4 O - O and O 6 O - O fold O higher O , O respectively O , O than O CtXyl5A B-protein ; O however O , O there O is O very O little O difference O in O the O activity O between O the O eukaryotic B-taxonomy_domain and O prokaryotic B-taxonomy_domain enzymes O against O CX B-chemical . O Attempts O to O express O individual O modules O of O a O variety O of O truncations O of O AcGH5 B-protein and O VbGH5 B-protein were O unsuccessful O . O This O may O indicate O that O the O individual O modules O can O only O fold O correctly O when O incorporated O into O the O full B-protein_state - I-protein_state length I-protein_state enzyme O , O demonstrating O the O importance O of O intermodule O interactions O to O maintain O the O structural O integrity O of O these O enzymes O . O Products O profile O generated O of O GH5_34 B-protein_type enzymes O . O The O enzymes O at O 1 O μm O were O incubated B-experimental_method with O the O four O different O xylans B-chemical at O 1 O % O in O 50 O mm O sodium O phosphate O buffer O for O 16 O h O at O 37 O ° O C O ( O GpGH5 B-protein , O VbGH5 B-protein , O and O AcGH5 B-protein ) O or O 60 O ° O C O . O The O limit O products O were O separated O by O TLC B-experimental_method . O The O xylooligosaccharide B-chemical standards O ( O X O ) O are O indicated O by O their O degrees O of O polymerization O . O A O characteristic O feature O of O enzymes O that O attack O the O plant B-taxonomy_domain cell O wall O is O their O complex O molecular O architecture O . O The O CBMs B-structure_element in O these O enzymes O generally O play O a O role O in O substrate O targeting O and O are O appended O to O the O catalytic B-structure_element modules I-structure_element through O flexible B-structure_element linker I-structure_element sequences I-structure_element . O CtXyl5A B-protein provides O a O rare O visualization O of O the O structure B-evidence of O multiple O modules O within O a O single O enzyme O . O The O central O feature O of O these O data O is O the O structural O role O played O by O two O of O the O CBMs B-structure_element , O CtCBM6 B-structure_element and O CtCBM13 B-structure_element , O in O maintaining O the O active B-protein_state conformation O of O the O catalytic B-structure_element module I-structure_element , O CtGH5 B-structure_element . O The O crystallographic B-evidence data I-evidence described O here O are O supported O by O biochemical O data O showing O either O that O these O two O modules O do O not O bind O to O glycans B-chemical ( O CtCBM13 B-structure_element ) O or O that O the O recognition O of O the O non O - O reducing O end O of O xylan B-chemical or O cellulose B-chemical chains O ( O CtCBM6 B-structure_element ) O is O unlikely O to O be O biologically O significant O . O It O should O be O emphasized O , O however O , O that O glycan B-chemical binding O and O substrate O targeting O may O only O be O evident O in O the O full B-protein_state - I-protein_state length I-protein_state enzyme O acting O on O highly O complex O structures O such O as O the O plant B-taxonomy_domain cell O wall O , O as O observed O recently O by O a O CBM46 B-structure_element module O in O the O Bacillus B-taxonomy_domain xyloglucanase B-protein_type / O mixed B-protein_type linked I-protein_type glucanase I-protein_type BhCel5B B-protein . O CtXyl5A B-protein is O a O member O of O GH5 B-protein_type that O contains O 6644 O members O . O CtXyl5A B-protein is O a O member O of O subfamily O GH5_34 B-protein_type . O Despite O differences O in O sequence O identity O all O of O the O homologs O were O shown O to O be O arabinoxylanases B-protein_type . O Consistent O with O the O conserved O substrate O specificity O , O all O members O of O GH5_34 B-protein_type contained O the O specificity B-site determinants I-site Glu68 B-residue_name_number , O Tyr92 B-residue_name_number , O and O Asn139 B-residue_name_number , O which O make O critical O interactions O with O the O xylose B-chemical or O arabinose B-chemical in O the O − B-site 2 I-site * I-site subsite I-site , O which O are O 1 O , O 3 O - O linked O to O the O xylose B-chemical positioned O in O the O active B-site site I-site . O The O presence O of O a O CBM62 B-structure_element in O CtXyl5A B-protein and O AcGH5 B-protein suggests O that O these O enzymes O target O highly O complex O xylans B-chemical that O contain O d B-chemical - I-chemical galactose I-chemical in O their O side O chains O . O The O absence B-protein_state of I-protein_state a O “ O non O - O structural O ” O CBM B-structure_element in O GpGH5 B-protein may O indicate O that O this O arabinoxylanase B-protein_type is O designed O to O target O simpler O arabinoxylans B-chemical present O in O the O endosperm O of O cereals B-taxonomy_domain . O Although O the O characterization O of O all O members O of O GH5_34 B-protein_type suggests O that O this O subfamily O is O monospecific O , O differences O in O specificity O are O observed O in O other O subfamilies O of O GHs B-protein_type including O GH43 B-protein_type and O GH5 B-protein_type . O Thus O , O as O new O members O of O GH5_34 B-protein_type are O identified O from O genomic O sequence O data O and O subsequently O characterized O , O the O specificity O of O this O family O may O require O reinterpretation O . O An O intriguing O feature O of O VbGH5 B-protein is O that O the O limited O products O generated O by O this O enzymes O are O much O larger O than O those O produced O by O the O other O arabinoxylanases B-protein_type . O This O suggests O that O although O arabinose B-chemical decorations O contribute O to O enzyme O specificity O ( O VbGH5 B-protein is O not O active O on O xylans B-chemical lacking O arabinose B-chemical side O chains O ), O the O enzyme O requires O other O specificity O determinants O that O occur O less O frequently O in O arabinoxylans B-chemical . O This O has O some O resonance O with O a O recently O described O GH98 B-protein_type xylanase B-protein_type that O also O exploits O specificity O determinants O that O occur O infrequently O and O are O only O evident O in O highly O complex O xylans B-chemical ( O e O . O g O . O CX B-chemical ). O To O conclude O , O this O study O provides O the O molecular O basis O for O the O specificity O displayed O by O arabinoxylanases B-protein_type . O Substrate O specificity O is O dominated O by O the O pocket B-site that O binds O single O arabinose B-chemical or O xylose B-chemical side O chains O . O The O open B-protein_state xylan B-site binding I-site cleft I-site explains O why O the O enzyme O is O able O to O attack O highly O decorated O forms O of O the O hemicellulose B-chemical . O It O is O also O evident O that O appending O additional O catalytic B-structure_element modules I-structure_element and O CBMs B-structure_element onto O the O core O components O of O these O enzymes O generates O bespoke O arabinoxylanases B-protein_type with O activities O optimized O for O specific O functions O . O The O specificities O of O the O arabinoxylanases B-protein_type described O here O are O distinct O from O the O classical O endo B-protein_type - I-protein_type xylanases I-protein_type and O thus O have O the O potential O to O contribute O to O the O toolbox O of O biocatalysts O required O by O industries O that O exploit O the O plant B-taxonomy_domain cell O wall O as O a O sustainable O substrate O . O Data B-evidence collection I-evidence and I-evidence refinement I-evidence statistics I-evidence CtXyl5A B-mutant - I-mutant D I-mutant GH5 B-complex_assembly - I-complex_assembly CBM6 I-complex_assembly - I-complex_assembly Arap I-complex_assembly GH5 B-complex_assembly - I-complex_assembly CBM6 I-complex_assembly - I-complex_assembly Xylp I-complex_assembly GH5 B-complex_assembly - I-complex_assembly CBM6 I-complex_assembly - I-complex_assembly ( I-complex_assembly Araf I-complex_assembly - I-complex_assembly Xylp4 I-complex_assembly ) I-complex_assembly Data O collection O Source O ESRF O - O ID14 O - O 1 O Diamond O I04 O – O 1 O Diamond O I24 O Diamond O I02 O Wavelength O ( O Å O ) O 0 O . O 9334 O 0 O . O 9173 O 0 O . O 9772 O 0 O . O 9791 O Space O group O P21212 O P212121 O P212121 O P212121 O Cell O dimensions O a O , O b O , O c O ( O Å O ) O 147 O . O 4 O , O 191 O . O 7 O , O 50 O . O 7 O 67 O . O 1 O , O 72 O . O 4 O , O 109 O . O 1 O 67 O . O 9 O , O 72 O . O 5 O , O 109 O . O 5 O 76 O . O 3 O , O 123 O . O 2 O , O 125 O . O 4 O α O , O β O , O γ O (°) O 90 O , O 90 O , O 90 O 90 O , O 90 O , O 90 O 90 O , O 90 O , O 90 O 90 O , O 90 O , O 90 O No O . O of O measured O reflections O 244 O , O 475 O ( O 29 O , O 324 O ) O 224 O , O 842 O ( O 11 O , O 281 O ) O 152 O , O 004 O ( O 4 O , O 996 O ) O 463 O , O 237 O ( O 23 O , O 068 O ) O No O . O of O independent O reflections O 42246 O ( O 5 O , O 920 O ) O 63 O , O 523 O ( O 3 O , O 175 O ) O 42 O , O 716 O ( O 2 O , O 334 O ) O 140 O , O 288 O ( O 6 O , O 879 O ) O Resolution O ( O Å O ) O 50 O . O 70 O – O 2 O . O 64 O ( O 2 O . O 78 O – O 2 O . O 64 O ) O 44 O . O 85 O – O 1 O . O 65 O ( O 1 O . O 68 O – O 1 O . O 65 O ) O 45 O . O 16 O – O 1 O . O 90 O ( O 1 O . O 94 O – O 1 O . O 90 O ) O 48 O . O 43 O – O 1 O . O 65 O ( O 1 O . O 68 O – O 1 O . O 65 O ) O Rmerge O (%) O 16 O . O 5 O ( O 69 O . O 5 O ) O 6 O . O 7 O ( O 65 O . O 1 O ) O 2 O . O 8 O ( O 8 O . O 4 O ) O 5 O . O 7 O ( O 74 O . O 9 O ) O CC1 O / O 2 O 0 O . O 985 O ( O 0 O . O 478 O ) O 0 O . O 998 O ( O 0 O . O 594 O ) O 0 O . O 999 O ( O 0 O . O 982 O ) O 0 O . O 998 O ( O 0 O . O 484 O ) O I O / O σI O 8 O . O 0 O ( O 2 O . O 0 O ) O 13 O ( O 1 O . O 6 O ) O 26 O . O 6 O ( O 8 O . O 0 O ) O 11 O . O 2 O ( O 1 O . O 6 O ) O Completeness O (%) O 98 O . O 5 O ( O 96 O . O 4 O ) O 98 O . O 5 O ( O 99 O . O 4 O ) O 98 O . O 6 O ( O 85 O . O 0 O ) O 98 O . O 8 O ( O 99 O . O 4 O ) O Redundancy O 5 O . O 8 O ( O 5 O . O 0 O ) O 3 O . O 5 O ( O 3 O . O 6 O ) O 3 O . O 6 O ( O 2 O . O 1 O ) O 3 O . O 3 O ( O 3 O . O 4 O ) O Refinement O Rwork B-evidence / O Rfree B-evidence 23 O . O 7 O / O 27 O . O 8 O 12 O . O 2 O / O 17 O . O 0 O 12 O . O 9 O / O 16 O . O 1 O 14 O . O 5 O / O 19 O . O 9 O No O . O atoms O Protein O 5446 O 3790 O 3729 O 7333 O Ligand O 19 O 20 O 20 O 92 O Water O 227 O 579 O 601 O 923 O B O - O factors O Protein O 41 O . O 6 O 17 O . O 8 O 15 O . O 8 O 21 O . O 0 O Ligand O 65 O . O 0 O 19 O . O 4 O 24 O . O 2 O 39 O . O 5 O Water O 35 O . O 4 O 38 O . O 5 O 32 O . O 2 O 37 O . O 6 O R O . O m O . O s O deviations O Bond O lengths O ( O Å O ) O 0 O . O 008 O 0 O . O 015 O 0 O . O 012 O 0 O . O 012 O Bond O angles O (°) O 1 O . O 233 O 1 O . O 502 O 1 O . O 624 O 1 O . O 554 O Protein O Data O Bank O code O 5G56 O 5LA0 O 5LA1 O 2LA2 O