File size: 22,141 Bytes
ebfe12f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import random

import gradio as gr
import time, os
import numpy as np
import torch
from tqdm import tqdm, trange
from PIL import Image


def random_clip(x, min=-1.5, max=1.5):
    if isinstance(x, np.ndarray):
        return np.clip(x, min, max)
    elif isinstance(x, torch.Tensor):
        return torch.clip(x, min, max)
    else:
        raise TypeError(f"type of x is {type(x)}")


class Sampler:
    def __init__(self, device, normal_t):
        self.device = device
        self.total_step = 1000
        self.normal_t = normal_t

        self.afas_cumprod, self.betas = self.get_afa_bars("scaled_linear",  # cosine,linear,scaled_linear
                                                          self.total_step)
        self.afas_cumprod = torch.Tensor(self.afas_cumprod).to(self.device)
        self.betas = torch.Tensor(self.betas).to(self.device)

    def betas_for_alpha_bar(self, num_diffusion_timesteps, alpha_bar, max_beta=0.999):
        """
        Create a beta schedule that discretizes the given alpha_t_bar function,
        which defines the cumulative product of (1-beta) over time from t = [0,1].

        :param num_diffusion_timesteps: the number of betas to produce.
        :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                          produces the cumulative product of (1-beta) up to that
                          part of the diffusion process.
        :param max_beta: the maximum beta to use; use values lower than 1 to
                         prevent singularities.
        """
        betas = []
        for i in range(num_diffusion_timesteps):
            t1 = i / num_diffusion_timesteps
            t2 = (i + 1) / num_diffusion_timesteps
            betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
        return np.array(betas)

    def get_named_beta_schedule(self, schedule_name, num_diffusion_timesteps):
        """
        Get a pre-defined beta schedule for the given name.

        The beta schedule library consists of beta schedules which remain similar
        in the limit of num_diffusion_timesteps.
        Beta schedules may be added, but should not be removed or changed once
        they are committed to maintain backwards compatibility.
        """
        if schedule_name == "linear":
            # Linear schedule from Ho et al, extended to work for any number of
            # diffusion steps.
            scale = 1000 / num_diffusion_timesteps
            beta_start = scale * 0.0001
            beta_end = scale * 0.02
            return np.linspace(
                beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
            )
        elif schedule_name == "scaled_linear":
            scale = 1000 / num_diffusion_timesteps
            beta_start = scale * 0.0001
            beta_end = scale * 0.02
            return np.linspace(
                beta_start ** 0.5, beta_end ** 0.5, num_diffusion_timesteps, dtype=np.float64) ** 2
        elif schedule_name == "cosine":
            return self.betas_for_alpha_bar(
                num_diffusion_timesteps,
                lambda t: np.cos((t + 0.008) / 1.008 * np.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"unknown beta schedule: {schedule_name}")

    def get_afa_bars(self, beta_schedule_name, total_step):
        """
        生成afa bar的列表,列表长度为total_step
        :param beta_schedule_name: beta_schedule
        :return: afa_bars和betas
        """

        # if linear:
        #     # 线性
        #     betas = np.linspace(1e-5, 0.1, self.total_step)
        #
        # else:
        #     # sigmoid
        #     betas = np.linspace(-6, 6, self.total_step)
        #     betas = 1 / (1 + np.exp(betas)) * (afa_max - afa_min) + afa_min
        betas = self.get_named_beta_schedule(schedule_name=beta_schedule_name,
                                             num_diffusion_timesteps=total_step)

        afas = 1 - betas
        afas_cumprod = np.cumprod(afas)
        # afas_cumprod = np.concatenate((np.array([1]), afas_cumprod[:-1]), axis=0)
        return afas_cumprod, betas

    # 重全噪声开始
    @torch.no_grad()
    def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
        pass

    def apple_noise(self, data, step):
        """
        添加噪声,返回xt和噪声
        :param data: 数据,潜空间
        :param step: 选择的步数
        :return:
        """
        data = data.to(self.device)

        noise = torch.randn(size=data.shape).to(self.device)
        afa_bar_t = self.afas_cumprod[step - 1]
        x_t = torch.sqrt(afa_bar_t) * data + torch.sqrt(1 - afa_bar_t) * noise
        return x_t

    # 图生图
    @torch.no_grad()
    def sample_loop_img2img(self, input_img, model, vae_middle_c, batch_size, step, eta):
        pass

    @torch.no_grad()
    def decode_img(self, vae, x0):
        x0 = vae.decoder(x0)
        res = x0.cpu().numpy()
        if vae.middle_c == 8:
            res = (res + 1) * 127.5
        else:
            res = res * 255
        res = np.transpose(res, [0, 2, 3, 1])  # RGB
        res = np.clip(res, 0, 255)
        res = np.array(res, dtype=np.uint8)
        return res

    @torch.no_grad()
    def encode_img(self, vae, x0):
        mu, _ = vae.encoder(x0)
        return mu


class DDIMSampler(Sampler):
    def __init__(self, device, normal_t):
        super(DDIMSampler, self).__init__(device, normal_t)

        # self.afas_cumprod, self.betas = self.get_afa_bars("scaled_linear",
        #                                                   self.total_step)  # cosine,linear,scaled_linear
        # self.afas_cumprod = torch.Tensor(self.afas_cumprod).to(self.device)
        # self.betas = torch.Tensor(self.betas).to(self.device)

    @torch.no_grad()
    def sample(self, model, x, t, next_t, eta):
        """

        :param model:
        :param x:
        :param t: 属于[1,1000]
        :return:
        """
        t_ = torch.ones((x.shape[0], 1)) * t
        t_ = t_.to(self.device)
        if self.normal_t:
            t_ = t_ / self.total_step
        epsilon = model(x, t_)
        # 把t转成index
        t = int(t - 1)
        next_t = int(next_t - 1)
        if t > 1:
            # pred_x0=(x-sqrt(1-afa_t_bar)ε)/(sqrt(afa_t_bar))
            prede_x0 = (x - torch.sqrt(1 - self.afas_cumprod[t]) * epsilon) / torch.sqrt(self.afas_cumprod[t])
            x_t_1 = torch.sqrt(self.afas_cumprod[next_t]) * prede_x0
            delta = eta * torch.sqrt((1 - self.afas_cumprod[next_t]) / (1 - self.afas_cumprod[t])) * torch.sqrt(
                1 - self.afas_cumprod[t] / self.afas_cumprod[next_t])
            x_t_1 = x_t_1 + torch.sqrt(1 - self.afas_cumprod[next_t] - delta ** 2) * epsilon
            x_t_1 = delta * random_clip(torch.randn_like(x)) + x_t_1
        else:
            coeff = self.betas[t] / (torch.sqrt(1 - self.afas_cumprod[t]))  # + 1e-5
            x_t_1 = (1 / torch.sqrt(1 - self.betas[t])) * (x - coeff * epsilon)

        return x_t_1

    @torch.no_grad()
    def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
        if step < 1000 and False:
            # 分两端均匀取子集
            # 1k步中的前35%用指定推理步数的50%
            big_steps = self.total_step * (1 - 0.4)
            big_ = int(step * 0.6)
            steps = np.linspace(self.total_step, big_steps, big_)
            steps = np.concatenate([steps, np.linspace(big_steps + int(steps[1] - steps[0]), 1, step - big_)],
                                   axis=0)
        else:
            # 均匀取子集
            steps = np.linspace(self.total_step, 1, step)
        steps = np.floor(steps)
        steps = np.concatenate((steps, steps[-1:]), axis=0)

        x_t = random_clip(torch.randn((batch_size, vae_middle_c, *shape))).to(self.device)  # 32, 32
        for i in range(len(steps) - 1):
            x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)

            yield x_t

    @torch.no_grad()
    def sample_loop_img2img(self, input_img_latents, noise_steps, model, vae_middle_c, batch_size, step, eta):
        noised_latents = self.apple_noise(input_img_latents, noise_steps)  # (1,4,32,32)
        step = min(noise_steps, step)
        if step < 1000 and False:
            # 分两端均匀取子集
            # 1k步中的前20%用指定推理步数的50%
            big_steps = noise_steps * (1 - 0.3)
            big_ = int(step * 0.5)
            steps = np.linspace(noise_steps, big_steps, big_)
            steps = np.concatenate([steps, np.linspace(big_steps + int(steps[1] - steps[0]), 1, step - big_)],
                                   axis=0)
        else:
            # 均匀取子集
            steps = np.linspace(noise_steps, 1, step)
        steps = np.floor(steps)
        steps = np.concatenate((steps, steps[-1:]), axis=0)

        x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device)  # 32, 32
        for i in trange(len(steps) - 1):
            x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)

            yield x_t


class EulerDpmppSampler(Sampler):
    def __init__(self, device, normal_t):
        super(EulerDpmppSampler, self).__init__(device, normal_t)
        self.sample_fun = self.sample_dpmpp_2m

    @staticmethod
    def append_zero(x):
        return torch.cat([x, x.new_zeros([1])])

    # 4e-5 0.99
    @staticmethod
    def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cuda'):
        """Constructs the noise schedule of Karras et al. (2022)."""
        ramp = torch.linspace(0, 1, n)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return EulerDpmppSampler.append_zero(sigmas).to(device)

    @staticmethod
    def default_noise_sampler(x):
        return lambda sigma, sigma_next: torch.randn_like(x)

    @staticmethod
    def get_ancestral_step(sigma_from, sigma_to, eta=1.):
        """Calculates the noise level (sigma_down) to step down to and the amount
        of noise to add (sigma_up) when doing an ancestral sampling step."""
        if not eta:
            return sigma_to, 0.
        sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
        sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
        return sigma_down, sigma_up

    @staticmethod
    def append_dims(x, target_dims):
        """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
        dims_to_append = target_dims - x.ndim
        if dims_to_append < 0:
            raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
        return x[(...,) + (None,) * dims_to_append]

    @staticmethod
    def to_d(x, sigma, denoised):
        """Converts a denoiser output to a Karras ODE derivative."""
        return (x - denoised) / EulerDpmppSampler.append_dims(sigma, x.ndim)

    @staticmethod
    def to_denoised(x, sigma, d):
        return x - d * EulerDpmppSampler.append_dims(sigma, x.ndim)

    @torch.no_grad()
    def sample_euler_ancestral(self, model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1.,
                               noise_sampler=None):
        """Ancestral sampling with Euler method steps."""
        extra_args = {} if extra_args is None else extra_args
        noise_sampler = EulerDpmppSampler.default_noise_sampler(x) if noise_sampler is None else noise_sampler
        s_in = x.new_ones([x.shape[0], 1])
        for i in trange(len(sigmas) - 1, disable=disable):
            t = sigmas[i] * (1 - 1 / self.total_step) + 1 / self.total_step
            t = torch.floor(t * self.total_step)  # 不归一化t需要输入整数

            afa_bar_t = self.afas_cumprod[int(t) - 1]  # 获得加噪用的afa bar
            if self.normal_t:
                t = t / self.total_step

            t = t * s_in
            output = model(x, t, **extra_args)
            denoised = (x - torch.sqrt(1 - afa_bar_t) * output) / torch.sqrt(afa_bar_t)

            sigma_down, sigma_up = self.get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
            if callback is not None:
                callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
            d = self.to_d(x, sigmas[i], denoised)
            # d = denoised
            # Euler method
            dt = sigma_down - sigmas[i]
            x = x + d * dt
            if sigmas[i + 1] > 0:
                x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
            yield x
        # return x

    @torch.no_grad()
    def sample_dpmpp_2m(self, model, x, sigmas, extra_args=None, callback=None, disable=None):
        """DPM-Solver++(2M)."""
        extra_args = {} if extra_args is None else extra_args
        s_in = x.new_ones([x.shape[0], 1])
        sigma_fn = lambda t: t.neg().exp()
        t_fn = lambda sigma: sigma.log().neg()
        old_denoised = None

        for i in trange(len(sigmas) - 1, disable=disable):
            t = sigmas[i] * (1 - 1 / self.total_step) + 1 / self.total_step
            t = torch.floor(t * self.total_step)  # 不归一化t需要输入整数

            afa_bar_t = self.afas_cumprod[int(t) - 1]  # 获得加噪用的afa bar
            if self.normal_t:
                t = t / self.total_step

            t = t * s_in
            output = model(x, t, **extra_args)
            denoised = (x - torch.sqrt(1 - afa_bar_t) * output) / torch.sqrt(afa_bar_t)

            if callback is not None:
                callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
            t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
            h = t_next - t
            if old_denoised is None or sigmas[i + 1] == 0:
                x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
            else:
                h_last = t - t_fn(sigmas[i - 1])
                r = h_last / h
                denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
                x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
            old_denoised = denoised
            yield x

    def switch_sampler(self, sampler_name):
        if sampler_name == "euler a":
            self.sample_fun = self.sample_euler_ancestral
        elif sampler_name == "dpmpp 2m":
            self.sample_fun = self.sample_dpmpp_2m
        else:
            self.sample_fun = self.sample_euler_ancestral

    def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
        x = torch.randn((batch_size, vae_middle_c, 32, 32)).to(device)
        sigmas = self.get_sigmas_karras(step, 1e-5, 0.999, device=device)
        # sigmas = self.get_named_beta_schedule("scaled_linear", step)

        looper = self.sample_fun(unet, x, sigmas)
        for _ in trange(len(sigmas) - 1):
            x_t = next(looper)
            yield x_t


class PretrainVae:
    def __init__(self, device):
        from diffusers import AutoencoderKL, DiffusionPipeline
        self.vae = AutoencoderKL.from_pretrained("gsdf/Counterfeit-V2.5",  # segmind/small-sd
                                                 subfolder="vae",
                                                 cache_dir="./vae/pretrain_vae").to(device)
        self.vae.requires_grad_(False)
        self.middle_c = 4
        self.vae_scaleing = 0.18215

    def encoder(self, x):
        latents = self.vae.encode(x)
        latents = latents.latent_dist
        mean = latents.mean * self.vae_scaleing
        var = latents.var * self.vae_scaleing
        return mean, var

    def decoder(self, latents):
        latents = latents / self.vae_scaleing
        output = self.vae.decode(latents).sample
        return output

    # 释放encoder
    def res_encoder(self):
        del self.vae.encoder
        torch.cuda.empty_cache()


# ================================================================

def merge_images(images: np.ndarray):
    """
    合并图像
    :param images: 图像数组
    :return: 合并后的图像数组
    """
    n, h, w, c = images.shape
    nn = int(np.ceil(n ** 0.5))
    merged_image = np.zeros((h * nn, w * nn, 3), dtype=images.dtype)
    for i in range(n):
        row = i // nn
        col = i % nn
        merged_image[row * h:(row + 1) * h, col * w:(col + 1) * w, :] = images[i]

    merged_image = np.clip(merged_image, 0, 255)
    merged_image = np.array(merged_image, dtype=np.uint8)
    return merged_image


def get_models(device):
    def modelLoad(model, model_path, data_parallel=False):
        model.load_state_dict(torch.load(model_path), strict=True)

        if data_parallel:
            model = torch.nn.DataParallel(model)
        return model

    from net.UNet import UNet
    config = {
        # 模型结构相关
        "en_out_c": (256, 256, 256, 320, 320, 320, 576, 576, 576, 704, 704, 704),
        "en_down": (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),
        "en_skip": (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1),
        "en_att_heads": (8, 8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 8),
        "de_out_c": (704, 576, 576, 576, 320, 320, 320, 256, 256, 256, 256),
        "de_up": ("none", "subpix", "none", "none", "subpix", "none", "none", "subpix", "none", "none", "none"),
        "de_skip": (1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),
        "de_att_heads": (8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 8),  # skip的地方不做self-attention
        "t_out_c": 256,
        "vae_c": 4,
        "block_deep": 3,
        "use_pretrain_vae": True,

        "normal_t": True,

        "model_save_path": "./weight",
        "model_name": "unet",
        "model_tail": "ema",
    }
    print("加载模型...")
    unet = UNet(config["en_out_c"], config["en_down"], config["en_skip"], config["en_att_heads"],
                config["de_out_c"], config["de_up"], config["de_skip"], config["de_att_heads"],
                config["t_out_c"], config["vae_c"], config["block_deep"]).to(device)
    unet = modelLoad(unet, os.path.join(config["model_save_path"],
                                        f"{config['model_name']}_{config['model_tail']}.pth"))

    vae = PretrainVae(device)
    print("加载完成")
    return unet, vae, config["normal_t"]


def init_webui(unet, vae, normal_t):
    # 定义回调函数
    def process_image(input_image_value, noise_step, step_value, batch_size, sampler_name, img_size,
                      progress=gr.Progress()):
        progress(0, desc="开始...")

        noise_step = float(noise_step)
        step_value = int(step_value)
        batch_size = int(batch_size)
        img_size = int(img_size) // 8
        img_size = (img_size, img_size)

        if sampler_name == "DDIM":
            sampler = DDIMSampler(device, normal_t)
        elif sampler_name == "euler a" or sampler_name == "dpmpp 2m":
            sampler = EulerDpmppSampler(device, normal_t)
            sampler.switch_sampler(sampler_name)
        else:
            raise ValueError(f"Unknow sampler_name: {sampler_name}")
        if input_image_value is None:
            looper = sampler.sample_loop(unet, vae.middle_c, batch_size, step_value, shape=img_size, eta=1.)
        else:
            input_image_value = Image.fromarray(input_image_value).resize(img_size, Image.ANTIALIAS)
            input_image_value = np.array(input_image_value, dtype=np.float32) / 255.
            input_image_value = np.transpose(input_image_value, (2, 0, 1))
            input_image_value = torch.Tensor([input_image_value]).to(device)
            input_img_latents = sampler.encode_img(vae, input_image_value)
            looper = sampler.sample_loop_img2img(input_img_latents,
                                                 int(noise_step * sampler.total_step),
                                                 unet,
                                                 vae.middle_c,
                                                 batch_size,
                                                 step_value,
                                                 eta=1.)
        for i in progress.tqdm(range(1, step_value + 1)):
            output = next(looper)

        output = sampler.decode_img(vae, output)
        output = np.clip(output, 0, 255)
        marge_img = merge_images(output)

        output = [marge_img] + list(output)

        return output

    with gr.Blocks(title="图片处理") as iface:
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    # 创建输入组件
                    input_image = gr.Image(label="输入图片")
                    # 加噪程度
                    noise_step = gr.Slider(minimum=0.05, maximum=1, value=0.6, label="加噪程度", step=0.01)
                with gr.Column():
                    # 选择sampler
                    sampler_name = gr.Dropdown(["DDIM"], label="sampler", value="DDIM")  # , "euler a", "dpmpp 2m"
                    # 创建滑动条组件
                    step = gr.Slider(minimum=1, maximum=1000, value=400, label="步长", step=1)
                    batch_size = gr.Slider(minimum=1, maximum=4, label="batch size", step=1)
                    img_size = gr.Slider(minimum=256, maximum=512, value=256, label="img size", step=64)
                    # 创建开始按钮组件
                    start_button = gr.Button(label="开始")
            # 创建输出组件
            output_images = gr.Gallery(show_label=False, height=400, columns=5)

        start_button.click(process_image, [input_image, noise_step, step, batch_size, sampler_name, img_size],
                           [output_images])

    return iface


if __name__ == '__main__':
    device = "cuda"
    unet, vae, normal_t = get_models(device)


    def run_with_ui(unet, vae, normal_t):
        # 创建界面
        iface = init_webui(unet, vae, normal_t)

        # 运行界面
        iface.queue().launch()  #


    run_with_ui(unet, vae, normal_t)