p1atdev's picture
initial commit
c5d1577
raw
history blame
No virus
9.94 kB
import os
import torch
import torch.nn as nn
from torch.utils.data.dataset import Dataset
from PIL import Image
import fnmatch
import cv2
import sys
import numpy as np
# torch.set_printoptions(precision=10)
class _bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(
in_filters,
nb_filters,
(fw, fh),
stride=subsample,
padding=(fw // 2, fh // 2),
padding_mode="zeros",
),
)
def forward(self, x):
return self.model(x)
# the following are for debugs
print(
"****",
np.max(x.cpu().numpy()),
np.min(x.cpu().numpy()),
np.mean(x.cpu().numpy()),
np.std(x.cpu().numpy()),
x.shape,
)
for i, layer in enumerate(self.model):
if i != 2:
x = layer(x)
else:
x = layer(x)
# x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
print(
"____",
np.max(x.cpu().numpy()),
np.min(x.cpu().numpy()),
np.mean(x.cpu().numpy()),
np.std(x.cpu().numpy()),
x.shape,
)
print(x[0])
return x
class _u_bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_u_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(
in_filters,
nb_filters,
(fw, fh),
stride=subsample,
padding=(fw // 2, fh // 2),
),
nn.Upsample(scale_factor=2, mode="nearest"),
)
def forward(self, x):
return self.model(x)
class _shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample=1):
super(_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters or subsample != 1:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
)
def forward(self, x, y):
# print(x.size(), y.size(), self.process)
if self.process:
y0 = self.model(x)
# print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
return y0 + y
else:
# print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
return x + y
class _u_shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample):
super(_u_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(
in_filters,
nb_filters,
(1, 1),
stride=subsample,
padding_mode="zeros",
),
nn.Upsample(scale_factor=2, mode="nearest"),
)
def forward(self, x, y):
if self.process:
return self.model(x) + y
else:
return x + y
class basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(basic_block, self).__init__()
self.conv1 = _bn_relu_conv(
in_filters, nb_filters, 3, 3, subsample=init_subsample
)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.residual(x1)
return self.shortcut(x, x2)
class _u_basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(_u_basic_block, self).__init__()
self.conv1 = _u_bn_relu_conv(
in_filters, nb_filters, 3, 3, subsample=init_subsample
)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
y = self.residual(self.conv1(x))
return self.shortcut(x, y)
class _residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
super(_residual_block, self).__init__()
layers = []
for i in range(repetitions):
init_subsample = 1
if i == repetitions - 1 and not is_first_layer:
init_subsample = 2
if i == 0:
l = basic_block(
in_filters=in_filters,
nb_filters=nb_filters,
init_subsample=init_subsample,
)
else:
l = basic_block(
in_filters=nb_filters,
nb_filters=nb_filters,
init_subsample=init_subsample,
)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class _upsampling_residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions):
super(_upsampling_residual_block, self).__init__()
layers = []
for i in range(repetitions):
l = None
if i == 0:
l = _u_basic_block(
in_filters=in_filters, nb_filters=nb_filters
) # (input)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters) # (input)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class res_skip(nn.Module):
def __init__(self):
super(res_skip, self).__init__()
self.block0 = _residual_block(
in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True
) # (input)
self.block1 = _residual_block(
in_filters=24, nb_filters=48, repetitions=3
) # (block0)
self.block2 = _residual_block(
in_filters=48, nb_filters=96, repetitions=5
) # (block1)
self.block3 = _residual_block(
in_filters=96, nb_filters=192, repetitions=7
) # (block2)
self.block4 = _residual_block(
in_filters=192, nb_filters=384, repetitions=12
) # (block3)
self.block5 = _upsampling_residual_block(
in_filters=384, nb_filters=192, repetitions=7
) # (block4)
self.res1 = _shortcut(
in_filters=192, nb_filters=192
) # (block3, block5, subsample=(1,1))
self.block6 = _upsampling_residual_block(
in_filters=192, nb_filters=96, repetitions=5
) # (res1)
self.res2 = _shortcut(
in_filters=96, nb_filters=96
) # (block2, block6, subsample=(1,1))
self.block7 = _upsampling_residual_block(
in_filters=96, nb_filters=48, repetitions=3
) # (res2)
self.res3 = _shortcut(
in_filters=48, nb_filters=48
) # (block1, block7, subsample=(1,1))
self.block8 = _upsampling_residual_block(
in_filters=48, nb_filters=24, repetitions=2
) # (res3)
self.res4 = _shortcut(
in_filters=24, nb_filters=24
) # (block0,block8, subsample=(1,1))
self.block9 = _residual_block(
in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True
) # (res4)
self.conv15 = _bn_relu_conv(
in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1
) # (block7)
def forward(self, x):
x0 = self.block0(x)
x1 = self.block1(x0)
x2 = self.block2(x1)
x3 = self.block3(x2)
x4 = self.block4(x3)
x5 = self.block5(x4)
res1 = self.res1(x3, x5)
x6 = self.block6(res1)
res2 = self.res2(x2, x6)
x7 = self.block7(res2)
res3 = self.res3(x1, x7)
x8 = self.block8(res3)
res4 = self.res4(x0, x8)
x9 = self.block9(res4)
y = self.conv15(x9)
return y
class MangaLineExtractor:
def __init__(self, model_path: str = "erika.pth", device: str = "cpu"):
self.model = res_skip()
self.model.load_state_dict(torch.load(model_path))
self.is_cuda = torch.cuda.is_available() and device == "cuda"
if self.is_cuda:
self.model.cuda()
else:
self.model.cpu()
self.model.eval()
def predict(self, image):
src = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rows = int(np.ceil(src.shape[0] / 16)) * 16
cols = int(np.ceil(src.shape[1] / 16)) * 16
# manually construct a batch. You can change it based on your usecases.
patch = np.ones((1, 1, rows, cols), dtype=np.float32)
patch[0, 0, 0 : src.shape[0], 0 : src.shape[1]] = src
if self.is_cuda:
tensor = torch.from_numpy(patch).cuda()
else:
tensor = torch.from_numpy(patch).cpu()
y = self.model(tensor)
yc = y.detach().numpy()[0, 0, :, :]
yc[yc > 255] = 255
yc[yc < 0] = 0
yc = yc / 255.0
output = yc[0 : src.shape[0], 0 : src.shape[1]]
output = cv2.cvtColor(output, cv2.COLOR_GRAY2BGR)
return output