File size: 9,076 Bytes
c5d1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413b5ca
c5d1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
from PIL import Image
import torchvision.transforms as transforms

try:
    from torchvision.transforms import InterpolationMode

    bic = InterpolationMode.BICUBIC
except ImportError:
    bic = Image.BICUBIC

import numpy as np
import torch
import torch.nn as nn
import functools

IMG_EXTENSIONS = [".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".webp"]


class UnetGenerator(nn.Module):
    """Create a Unet-based generator"""

    def __init__(
        self,
        input_nc,
        output_nc,
        num_downs,
        ngf=64,
        norm_layer=nn.BatchNorm2d,
        use_dropout=False,
    ):
        """Construct a Unet generator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            output_nc (int) -- the number of channels in output images
            num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
                                image of size 128x128 will become of size 1x1 # at the bottleneck
            ngf (int)       -- the number of filters in the last conv layer
            norm_layer      -- normalization layer
        We construct the U-Net from the innermost layer to the outermost layer.
        It is a recursive process.
        """
        super(UnetGenerator, self).__init__()
        # construct unet structure
        unet_block = UnetSkipConnectionBlock(
            ngf * 8,
            ngf * 8,
            input_nc=None,
            submodule=None,
            norm_layer=norm_layer,
            innermost=True,
        )  # add the innermost layer
        for _ in range(num_downs - 5):  # add intermediate layers with ngf * 8 filters
            unet_block = UnetSkipConnectionBlock(
                ngf * 8,
                ngf * 8,
                input_nc=None,
                submodule=unet_block,
                norm_layer=norm_layer,
                use_dropout=use_dropout,
            )
        # gradually reduce the number of filters from ngf * 8 to ngf
        unet_block = UnetSkipConnectionBlock(
            ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        unet_block = UnetSkipConnectionBlock(
            ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        unet_block = UnetSkipConnectionBlock(
            ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        self.model = UnetSkipConnectionBlock(
            output_nc,
            ngf,
            input_nc=input_nc,
            submodule=unet_block,
            outermost=True,
            norm_layer=norm_layer,
        )  # add the outermost layer

    def forward(self, input):
        """Standard forward"""
        return self.model(input)


class UnetSkipConnectionBlock(nn.Module):
    """Defines the Unet submodule with skip connection.
    X -------------------identity----------------------
    |-- downsampling -- |submodule| -- upsampling --|
    """

    def __init__(
        self,
        outer_nc,
        inner_nc,
        input_nc=None,
        submodule=None,
        outermost=False,
        innermost=False,
        norm_layer=nn.BatchNorm2d,
        use_dropout=False,
    ):
        """Construct a Unet submodule with skip connections.
        Parameters:
            outer_nc (int) -- the number of filters in the outer conv layer
            inner_nc (int) -- the number of filters in the inner conv layer
            input_nc (int) -- the number of channels in input images/features
            submodule (UnetSkipConnectionBlock) -- previously defined submodules
            outermost (bool)    -- if this module is the outermost module
            innermost (bool)    -- if this module is the innermost module
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers.
        """
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d
        if input_nc is None:
            input_nc = outer_nc
        downconv = nn.Conv2d(
            input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
        )
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = norm_layer(inner_nc)
        uprelu = nn.ReLU(True)
        upnorm = norm_layer(outer_nc)

        if outermost:
            upconv = nn.ConvTranspose2d(
                inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1
            )
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(
                inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
            )
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(
                inner_nc * 2,
                outer_nc,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=use_bias,
            )
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:  # add skip connections
            return torch.cat([x, self.model(x)], 1)


class Anime2Sketch:
    def __init__(
        self, model_path: str = "./models/netG.pth", device: str = "cpu"
    ) -> None:
        norm_layer = functools.partial(
            nn.InstanceNorm2d, affine=False, track_running_stats=False
        )
        net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
        ckpt = torch.load(model_path)

        for key in list(ckpt.keys()):
            if "module." in key:
                ckpt[key.replace("module.", "")] = ckpt[key].half()
                del ckpt[key]

        net.load_state_dict(ckpt)

        self.model = net

        if torch.cuda.is_available() and device == "cuda":
            self.device = "cuda"
            self.model.to(device)
        else:
            self.device = "cpu"
            self.model.to("cpu")

    def predict(self, image: Image.Image, load_size: int = 512) -> Image:
        try:
            aus_resize = None
            if load_size > 0:
                aus_resize = image.size
            transform = self.get_transform(load_size=load_size)
            image = transform(image)
            img = image.unsqueeze(0)
        except:
            raise Exception("Error in reading image {}".format(image.filename))

        aus_tensor = self.model(img.to(self.device))
        aus_img = self.tensor_to_img(aus_tensor)

        image_pil = Image.fromarray(aus_img)
        if aus_resize:
            bic = Image.BICUBIC
            image_pil = image_pil.resize(aus_resize, bic)

        return image_pil

    def get_transform(self, load_size=0, grayscale=False, method=bic, convert=True):
        transform_list = []
        if grayscale:
            transform_list.append(transforms.Grayscale(1))
        if load_size > 0:
            osize = [load_size, load_size]
            transform_list.append(transforms.Resize(osize, method))
        if convert:
            transform_list += [transforms.ToTensor()]
            if grayscale:
                transform_list += [transforms.Normalize((0.5,), (0.5,))]
            else:
                transform_list += [
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                ]
        return transforms.Compose(transform_list)

    def tensor_to_img(self, input_image, imtype=np.uint8):
        """ "Converts a Tensor array into a numpy image array.
        Parameters:
            input_image (tensor) --  the input image tensor array
            imtype (type)        --  the desired type of the converted numpy array
        """

        if not isinstance(input_image, np.ndarray):
            if isinstance(input_image, torch.Tensor):  # get the data from a variable
                image_tensor = input_image.data
            else:
                return input_image
            image_numpy = (
                image_tensor[0].cpu().float().numpy()
            )  # convert it into a numpy array
            if image_numpy.shape[0] == 1:  # grayscale to RGB
                image_numpy = np.tile(image_numpy, (3, 1, 1))
            image_numpy = (
                (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
            )  # post-processing: tranpose and scaling
        else:  # if it is a numpy array, do nothing
            image_numpy = input_image
        return image_numpy.astype(imtype)