""" WaveGRU model: melspectrogram => mu-law encoded waveform """ import jax import jax.numpy as jnp import pax class ReLU(pax.Module): def __call__(self, x): return jax.nn.relu(x) def dilated_residual_conv_block(dim, kernel, stride, dilation): """ Use dilated convs to enlarge the receptive field """ return pax.Sequential( pax.Conv1D(dim, dim, kernel, stride, dilation, "VALID", with_bias=False), pax.LayerNorm(dim, -1, True, True), ReLU(), pax.Conv1D(dim, dim, 1, 1, 1, "VALID", with_bias=False), pax.LayerNorm(dim, -1, True, True), ReLU(), ) def tile_1d(x, factor): """ Tile tensor of shape N, L, D into N, L*factor, D """ N, L, D = x.shape x = x[:, :, None, :] x = jnp.tile(x, (1, 1, factor, 1)) x = jnp.reshape(x, (N, L * factor, D)) return x def up_block(dim, factor): """ Tile >> Conv >> BatchNorm >> ReLU """ return pax.Sequential( lambda x: tile_1d(x, factor), pax.Conv1D(dim, dim, 2 * factor, stride=1, padding="VALID", with_bias=False), pax.LayerNorm(dim, -1, True, True), ReLU(), ) class Upsample(pax.Module): """ Upsample melspectrogram to match raw audio sample rate. """ def __init__(self, input_dim, upsample_factors): super().__init__() self.input_conv = pax.Sequential( pax.Conv1D(input_dim, 512, 1, with_bias=False), pax.LayerNorm(512, -1, True, True), ) self.upsample_factors = upsample_factors self.dilated_convs = [ dilated_residual_conv_block(512, 3, 1, 2**i) for i in range(5) ] self.up_factors = upsample_factors[:-1] self.up_blocks = [up_block(512, x) for x in self.up_factors] self.final_tile = upsample_factors[-1] def __call__(self, x): x = self.input_conv(x) for residual in self.dilated_convs: y = residual(x) pad = (x.shape[1] - y.shape[1]) // 2 x = x[:, pad:-pad, :] + y for f in self.up_blocks: x = f(x) x = tile_1d(x, self.final_tile) return x class Pruner(pax.Module): """ Base class for pruners """ def __init__(self, update_freq=500): super().__init__() self.update_freq = update_freq def compute_sparsity(self, step): """ Two-stages pruning """ t = jnp.power(1 - (step * 1.0 - 1_000) / 300_000, 3) z = 0.5 * jnp.clip(1.0 - t, a_min=0, a_max=1) for i in range(4): t = jnp.power(1 - (step * 1.0 - 1_000 - 400_000 - i * 200_000) / 100_000, 3) z = z + 0.1 * jnp.clip(1 - t, a_min=0, a_max=1) return z def prune(self, step, weights): """ Return a mask """ z = self.compute_sparsity(step) x = weights H, W = x.shape x = x.reshape(H // 4, 4, W // 4, 4) x = jnp.abs(x) x = jnp.sum(x, axis=(1, 3), keepdims=True) q = jnp.quantile(jnp.reshape(x, (-1,)), z) x = x >= q x = jnp.tile(x, (1, 4, 1, 4)) x = jnp.reshape(x, (H, W)) return x class GRUPruner(Pruner): def __init__(self, gru, update_freq=500): super().__init__(update_freq=update_freq) self.xh_zr_fc_mask = jnp.ones_like(gru.xh_zr_fc.weight) == 1 self.xh_h_fc_mask = jnp.ones_like(gru.xh_h_fc.weight) == 1 def __call__(self, gru: pax.GRU): """ Apply mask after an optimization step """ zr_masked_weights = jnp.where(self.xh_zr_fc_mask, gru.xh_zr_fc.weight, 0) gru = gru.replace_node(gru.xh_zr_fc.weight, zr_masked_weights) h_masked_weights = jnp.where(self.xh_h_fc_mask, gru.xh_h_fc.weight, 0) gru = gru.replace_node(gru.xh_h_fc.weight, h_masked_weights) return gru def update_mask(self, step, gru: pax.GRU): """ Update internal masks """ xh_z_weight, xh_r_weight = jnp.split(gru.xh_zr_fc.weight, 2, axis=1) xh_z_weight = self.prune(step, xh_z_weight) xh_r_weight = self.prune(step, xh_r_weight) self.xh_zr_fc_mask *= jnp.concatenate((xh_z_weight, xh_r_weight), axis=1) self.xh_h_fc_mask *= self.prune(step, gru.xh_h_fc.weight) class LinearPruner(Pruner): def __init__(self, linear, update_freq=500): super().__init__(update_freq=update_freq) self.mask = jnp.ones_like(linear.weight) == 1 def __call__(self, linear: pax.Linear): """ Apply mask after an optimization step """ return linear.replace(weight=jnp.where(self.mask, linear.weight, 0)) def update_mask(self, step, linear: pax.Linear): """ Update internal masks """ self.mask *= self.prune(step, linear.weight) class WaveGRU(pax.Module): """ WaveGRU vocoder model """ def __init__( self, mel_dim=80, embed_dim=32, rnn_dim=512, upsample_factors=(5, 4, 3, 5) ): super().__init__() self.embed = pax.Embed(256, embed_dim) self.upsample = Upsample(input_dim=mel_dim, upsample_factors=upsample_factors) self.rnn = pax.GRU(embed_dim + rnn_dim, rnn_dim) self.o1 = pax.Linear(rnn_dim, rnn_dim) self.o2 = pax.Linear(rnn_dim, 256) self.gru_pruner = GRUPruner(self.rnn) self.o1_pruner = LinearPruner(self.o1) self.o2_pruner = LinearPruner(self.o2) def output(self, x): x = self.o1(x) x = jax.nn.relu(x) x = self.o2(x) return x @jax.jit def inference_step(self, rnn_state, mel, rng_key, x): """one inference step""" x = self.embed(x) x = jnp.concatenate((x, mel), axis=-1) rnn_state, x = self.rnn(rnn_state, x) x = self.output(x) rng_key, next_rng_key = jax.random.split(rng_key, 2) x = jax.random.categorical(rng_key, x, axis=-1) return rnn_state, next_rng_key, x def inference(self, mel, no_gru=False, seed=42): """ generate waveform form melspectrogram """ y = self.upsample(mel) if no_gru: return y x = jnp.array([127], dtype=jnp.int32) rnn_state = self.rnn.initial_state(1) output = [] rng_key = jax.random.PRNGKey(seed) for i in range(y.shape[1]): rnn_state, rng_key, x = self.inference_step(rnn_state, y[:, i], rng_key, x) output.append(x) x = jnp.concatenate(output, axis=0) return x def __call__(self, mel, x): x = self.embed(x) y = self.upsample(mel) pad_left = (x.shape[1] - y.shape[1]) // 2 pad_right = x.shape[1] - y.shape[1] - pad_left x = x[:, pad_left:-pad_right] x = jnp.concatenate((x, y), axis=-1) _, x = pax.scan( self.rnn, self.rnn.initial_state(x.shape[0]), x, time_major=False, ) x = self.output(x) return x