ChatData / helper.py
Fangrui Liu
update chat
19bd5a9
raw
history blame
No virus
20.7 kB
import json
import time
import hashlib
from typing import Dict, Any
import re
import pandas as pd
from os import environ
import streamlit as st
import datetime
from sqlalchemy import Column, Text, create_engine, MetaData
from langchain.agents import AgentExecutor
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from clickhouse_sqlalchemy import (
Table, make_session, get_declarative_base, types, engines
)
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from langchain.utilities.sql_database import SQLDatabase
from langchain.chains import LLMChain
from sqlalchemy import create_engine, MetaData
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseRetriever
from langchain import OpenAI
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.self_query.myscale import MyScaleTranslator
from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings
from langchain.vectorstores import MyScaleSettings
from chains.arxiv_chains import MyScaleWithoutMetadataJson
from langchain.schema import Document
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import MessagesPlaceholder
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import AgentTokenBufferMemory
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.schema import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage
from langchain.memory import SQLChatMessageHistory
from langchain.memory.chat_message_histories.sql import \
BaseMessageConverter, DefaultMessageConverter
from langchain.schema.messages import BaseMessage, _message_to_dict, messages_from_dict
from langchain.agents.agent_toolkits import create_retriever_tool
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
# query_model_name = "gpt-3.5-turbo-instruct"
query_model_name = "text-davinci-003"
chat_model_name = "gpt-3.5-turbo-16k"
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
OPENAI_API_BASE = st.secrets['OPENAI_API_BASE']
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
(HumanMessagePromptTemplate, '{question}')])
def hint_arxiv():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"*If you want to search papers with complex filters*:\n\n"
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
"*If you want to ask questions based on papers in database*:\n\n"
"- What is PageRank?\n"
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
"- Introduce some applications of GANs published around 2019.\n"
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
"- Is it possible to synthesize room temperature super conductive material?")
def hint_sql_arxiv():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
def hint_wiki():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"- Which company did Elon Musk found?\n"
"- What is Iron Gwazi?\n"
"- What is a Ring in mathematics?\n"
"- 苹果的发源地是那里?\n")
def hint_sql_wiki():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE wiki.Wikipedia (
`id` String,
`title` String,
`text` String,
`url` String,
`wiki_id` UInt64,
`views` Float32,
`paragraph_id` UInt64,
`langs` UInt32,
`emb` Array(Float32),
VECTOR INDEX vec_idx emb TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT emb_len CHECK length(emb) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
sel_map = {
'Wikipedia': {
"database": "wiki",
"table": "Wikipedia",
"hint": hint_wiki,
"hint_sql": hint_sql_wiki,
"doc_prompt": PromptTemplate(
input_variables=["page_content", "url", "title", "ref_id", "views"],
template="Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"),
"metadata_cols": [
AttributeInfo(
name="title",
description="title of the wikipedia page",
type="string",
),
AttributeInfo(
name="text",
description="paragraph from this wiki page",
type="string",
),
AttributeInfo(
name="views",
description="number of views",
type="float"
),
],
"must_have_cols": ['id', 'title', 'url', 'text', 'views'],
"vector_col": "emb",
"text_col": "text",
"metadata_col": "metadata",
"emb_model": lambda: SentenceTransformerEmbeddings(
model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2',),
"tool_desc": ("search_among_wikipedia", "Searches among Wikipedia and returns related wiki pages"),
},
'ArXiv Papers': {
"database": "default",
"table": "ChatArXiv",
"hint": hint_arxiv,
"hint_sql": hint_sql_arxiv,
"doc_prompt": PromptTemplate(
input_variables=["page_content", "id", "title", "ref_id",
"authors", "pubdate", "categories"],
template="Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"),
"metadata_cols": [
AttributeInfo(
name=VirtualColumnName(name="pubdate"),
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
],
"must_have_cols": ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'],
"vector_col": "vector",
"text_col": "abstract",
"metadata_col": "metadata",
"emb_model": lambda: HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: "),
"tool_desc": ("search_among_scientific_papers", "Searches among scientific papers from ArXiv and returns research papers"),
}
}
def build_embedding_model(_sel):
"""Build embedding model
"""
with st.spinner("Loading Model..."):
embeddings = sel_map[_sel]["emb_model"]()
return embeddings
def build_chains_retrievers(_sel: str) -> Dict[str, Any]:
"""build chains and retrievers
:param _sel: selected knowledge base
:type _sel: str
:return: _description_
:rtype: Dict[str, Any]
"""
metadata_field_info = sel_map[_sel]["metadata_cols"]
retriever = build_self_query(_sel)
chain = build_qa_chain(_sel, retriever, name="Self Query Retriever")
sql_retriever = build_vector_sql(_sel)
sql_chain = build_qa_chain(_sel, sql_retriever, name="Vector SQL")
return {
"metadata_columns": [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info],
"retriever": retriever,
"chain": chain,
"sql_retriever": sql_retriever,
"sql_chain": sql_chain
}
def build_self_query(_sel: str) -> SelfQueryRetriever:
"""Build self querying retriever
:param _sel: selected knowledge base
:type _sel: str
:return: retriever used by chains
:rtype: SelfQueryRetriever
"""
with st.spinner(f"Connecting DB for {_sel}..."):
myscale_connection = {
"host": MYSCALE_HOST,
"port": MYSCALE_PORT,
"username": MYSCALE_USER,
"password": MYSCALE_PASSWORD,
}
config = MyScaleSettings(**myscale_connection,
database=sel_map[_sel]["database"],
table=sel_map[_sel]["table"],
column_map={
"id": "id",
"text": sel_map[_sel]["text_col"],
"vector": sel_map[_sel]["vector_col"],
"metadata": sel_map[_sel]["metadata_col"]
})
doc_search = MyScaleWithoutMetadataJson(st.session_state[f"emb_model_{_sel}"], config,
must_have_cols=sel_map[_sel]['must_have_cols'])
with st.spinner(f"Building Self Query Retriever for {_sel}..."):
metadata_field_info = sel_map[_sel]["metadata_cols"]
retriever = SelfQueryRetriever.from_llm(
OpenAI(model_name=query_model_name, openai_api_key=OPENAI_API_KEY, temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False, structured_query_translator=MyScaleTranslator())
return retriever
def build_vector_sql(_sel: str)->VectorSQLDatabaseChainRetriever:
"""Build Vector SQL Database Retriever
:param _sel: selected knowledge base
:type _sel: str
:return: retriever used by chains
:rtype: VectorSQLDatabaseChainRetriever
"""
with st.spinner(f'Building Vector SQL Database Retriever for {_sel}...'):
engine = create_engine(
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel]["database"]}?protocol=https')
metadata = MetaData(bind=engine)
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=_myscale_prompt,
)
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
model=st.session_state[f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]["must_have_cols"])
sql_query_chain = VectorSQLDatabaseChain.from_llm(
llm=OpenAI(model_name=query_model_name, openai_api_key=OPENAI_API_KEY, temperature=0),
prompt=PROMPT,
top_k=10,
return_direct=True,
db=SQLDatabase(engine, None, metadata, max_string_length=1024),
sql_cmd_parser=output_parser,
native_format=True
)
sql_retriever = VectorSQLDatabaseChainRetriever(
sql_db_chain=sql_query_chain, page_content_key=sel_map[_sel]["text_col"])
return sql_retriever
def build_qa_chain(_sel: str, retriever: BaseRetriever, name: str="Self-query") -> ArXivQAwithSourcesChain:
"""_summary_
:param _sel: selected knowledge base
:type _sel: str
:param retriever: retriever used by chains
:type retriever: BaseRetriever
:param name: display name, defaults to "Self-query"
:type name: str, optional
:return: QA chain interacts with user
:rtype: ArXivQAwithSourcesChain
"""
with st.spinner(f'Building QA Chain with {name} for {_sel}...'):
chain = ArXivQAwithSourcesChain(
retriever=retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name=chat_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=sel_map[_sel]["doc_prompt"],
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
return chain
@st.cache_resource
def build_all() -> Dict[str, Any]:
"""build all resources
:return: sel_map_obj
:rtype: Dict[str, Any]
"""
sel_map_obj = {}
for k in sel_map:
st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
sel_map_obj[k] = build_chains_retrievers(k)
return sel_map_obj
def create_message_model(table_name, DynamicBase): # type: ignore
"""
Create a message model for a given table name.
Args:
table_name: The name of the table to use.
DynamicBase: The base class to use for the model.
Returns:
The model class.
"""
# Model decleared inside a function to have a dynamic table name
class Message(DynamicBase):
__tablename__ = table_name
id = Column(types.Float64)
session_id = Column(Text)
msg_id = Column(Text, primary_key=True)
type = Column(Text)
addtionals = Column(Text)
message = Column(Text)
__table_args__ = (
engines.ReplacingMergeTree(
partition_by='session_id',
order_by=('id', 'msg_id')),
{'comment': 'Store Chat History'}
)
return Message
class DefaultClickhouseMessageConverter(DefaultMessageConverter):
"""The default message converter for SQLChatMessageHistory."""
def __init__(self, table_name: str):
self.model_class = create_message_model(table_name, declarative_base())
def to_sql_model(self, message: BaseMessage, session_id: str) -> Any:
tstamp = time.time()
msg_id = hashlib.sha256(f"{session_id}_{message}_{tstamp}".encode('utf-8')).hexdigest()
return self.model_class(
id=tstamp,
msg_id=msg_id,
session_id=session_id,
type=message.type,
addtionals=json.dumps(message.additional_kwargs),
message=json.dumps({
"type": message.type,
"additional_kwargs": {"timestamp": tstamp},
"data": message.dict()})
)
def from_sql_model(self, sql_message: Any) -> BaseMessage:
msg_dump = json.loads(sql_message.message)
msg = messages_from_dict([msg_dump])[0]
msg.additional_kwargs = msg_dump["additional_kwargs"]
return msg
def get_sql_model_class(self) -> Any:
return self.model_class
def create_agent_executor(name, session_id, llm, tools, **kwargs):
name = name.replace(" ", "_")
conn_str = f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}'
chat_memory = SQLChatMessageHistory(
session_id,
connection_string=f'{conn_str}/chat?protocol=https',
custom_message_converter=DefaultClickhouseMessageConverter(name))
memory = AgentTokenBufferMemory(llm=llm, chat_memory=chat_memory)
_system_message = SystemMessage(
content=(
"Do your best to answer the questions. "
"Feel free to use any tools available to look up "
"relevant information. Please keep all details in query "
"when calling search functions."
)
)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=_system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
return AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True,
return_intermediate_steps=True,
**kwargs
)
@st.cache_resource
def build_tools():
"""build all resources
:return: sel_map_obj
:rtype: Dict[str, Any]
"""
sel_map_obj = {}
for k in sel_map:
if f'emb_model_{k}' not in st.session_state:
st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
if "sel_map_obj" not in st.session_state:
st.session_state["sel_map_obj"] = {}
if k not in st.session_state.sel_map_obj:
st.session_state["sel_map_obj"][k] = {}
if "langchain_retriever" not in st.session_state.sel_map_obj[k] or "vecsql_retriever" not in st.session_state.sel_map_obj[k]:
st.session_state.sel_map_obj[k].update(build_chains_retrievers(k))
sel_map_obj[k] = {
"langchain_retriever_tool": create_retriever_tool(st.session_state.sel_map_obj[k]["retriever"], *sel_map[k]["tool_desc"],),
"vecsql_retriever_tool": create_retriever_tool(st.session_state.sel_map_obj[k]["sql_retriever"], *sel_map[k]["tool_desc"],),
}
return sel_map_obj
@st.cache_resource(max_entries=1)
def build_agents(username):
chat_llm = ChatOpenAI(model_name=chat_model_name, temperature=0.6, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY)
agents = {}
cnt = 0
p = st.progress(0.0, "Building agents with different knowledge base...")
for k in [*sel_map.keys(), 'ArXiv + Wikipedia']:
for m, n in [("langchain_retriever_tool", "Self-querying retriever"), ("vecsql_retriever_tool", "Vector SQL")]:
if k == 'ArXiv + Wikipedia':
tools = [st.session_state.tools[k][m] for k in sel_map.keys()]
elif k == 'Null':
tools = []
else:
tools = [st.session_state.tools[k][m]]
if k not in agents:
agents[k] = {}
agents[k][n] = create_agent_executor(
"chat_memory",
username,
chat_llm,
tools=tools,
)
cnt += 1/6
p.progress(cnt, f"Building with Knowledge Base {k} via Retriever {n}...")
p.empty()
return agents
def display(dataframe, columns_=None, index=None):
if len(dataframe) > 0:
if index:
dataframe.set_index(index)
if columns_:
st.dataframe(dataframe[columns_])
else:
st.dataframe(dataframe)
else:
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)