sovits-overwatch2 / data_utils.py
cjayic's picture
add stuff
d27bdac
raw
history blame
No virus
12.6 kB
import time
import os
import random
import numpy as np
import torch
import torch.utils.data
import commons
from mel_processing import spectrogram_torch
from utils import load_wav_to_torch, load_unit_audio_pairs
class UnitAudioLoader(torch.utils.data.Dataset):
'''
1) loads audio and speech units
2) compute spectrograms
'''
def __init__(self, unit_audio_pairs, hparams, train=True):
self.unit_audio_pairs = load_unit_audio_pairs(unit_audio_pairs)
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
random.seed(1234)
random.shuffle(self.unit_audio_pairs)
self._filter()
def _filter(self):
lengths = []
for audio_path, _ in self.unit_audio_pairs:
lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length))
self.lengths = lengths
def get_unit_audio_pair(self, unit_audio_pairs):
audio_path, unit_path = unit_audio_pairs[0], unit_audio_pairs[1]
unit = np.load(unit_path)
unit = torch.FloatTensor(unit)
# unit = torch.LongTensor(unit)
spec, wav = self.get_audio(audio_path)
return (unit, spec, wav)
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} {} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
return spec, audio_norm
def __getitem__(self, index):
return self.get_unit_audio_pair(self.unit_audio_pairs[index])
def __len__(self):
return len(self.unit_audio_pairs)
class UnitAudioCollate():
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text and aduio
PARAMS
------
batch: [unit, spec_normalized, wav_normalized]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]),
dim=0, descending=True)
max_unit_len = max([len(x[0]) for x in batch])
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
unit_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256)
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
unit_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
unit = row[0]
unit_padded[i, :unit.size(0)] = unit
unit_lengths[i] = unit.size(0)
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
if self.return_ids:
return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
"""Multi speaker version"""
class UnitAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, speech unit pairs
2) computes spectrograms from audio files.
"""
def __init__(self, unit_sid_audio_pairs, hparams):
self.unit_sid_audio_pairs = load_unit_audio_pairs(unit_sid_audio_pairs)
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
random.seed(1234)
random.shuffle(self.unit_sid_audio_pairs)
self._filter()
def _filter(self):
lengths = []
for audio_path, _, _ in self.unit_sid_audio_pairs:
lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length))
self.lengths = lengths
def get_unit_sid_audio_pair(self, unit_sid_audio_pair):
# separate filename, speaker_id and text
audio_path, sid, unit_path = unit_sid_audio_pair[0], unit_sid_audio_pair[1], unit_sid_audio_pair[2]
unit = np.load(unit_path)
unit = torch.FloatTensor(unit)
# unit = torch.LongTensor(unit)
spec, wav = self.get_audio(audio_path)
sid = self.get_sid(sid)
return (unit, spec, wav, sid)
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
return spec, audio_norm
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
return self.get_unit_sid_audio_pair(self.unit_sid_audio_pairs[index])
def __len__(self):
return len(self.unit_sid_audio_pairs)
class UnitAudioSpeakerCollate():
""" Zero-pads model inputs and targets
"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [unit, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]),
dim=0, descending=True)
max_unit_len = max([len(x[0]) for x in batch])
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
unit_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
sid = torch.LongTensor(len(batch))
unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256)
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
unit_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
unit = row[0]
unit_padded[i, :unit.size(0)] = unit
unit_lengths[i] = unit.size(0)
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
sid[i] = row[3]
if self.return_ids:
return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size