File size: 5,588 Bytes
206ce41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
""" This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch"""

import math
import json
from functools import reduce

import torch
from torch import nn


#------------------------------------------------------------------------------
#  Useful functions
#------------------------------------------------------------------------------

def _make_divisible(v, divisor, min_value=None):
	if min_value is None:
		min_value = divisor
	new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
	# Make sure that round down does not go down by more than 10%.
	if new_v < 0.9 * v:
		new_v += divisor
	return new_v


def conv_bn(inp, oup, stride):
	return nn.Sequential(
		nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
		nn.BatchNorm2d(oup),
		nn.ReLU6(inplace=True)
	)


def conv_1x1_bn(inp, oup):
	return nn.Sequential(
		nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
		nn.BatchNorm2d(oup),
		nn.ReLU6(inplace=True)
	)


#------------------------------------------------------------------------------
#  Class of Inverted Residual block
#------------------------------------------------------------------------------

class InvertedResidual(nn.Module):
	def __init__(self, inp, oup, stride, expansion, dilation=1):
		super(InvertedResidual, self).__init__()
		self.stride = stride
		assert stride in [1, 2]

		hidden_dim = round(inp * expansion)
		self.use_res_connect = self.stride == 1 and inp == oup

		if expansion == 1:
			self.conv = nn.Sequential(
				# dw
				nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
				nn.BatchNorm2d(hidden_dim),
				nn.ReLU6(inplace=True),
				# pw-linear
				nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
				nn.BatchNorm2d(oup),
			)
		else:
			self.conv = nn.Sequential(
				# pw
				nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
				nn.BatchNorm2d(hidden_dim),
				nn.ReLU6(inplace=True),
				# dw
				nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
				nn.BatchNorm2d(hidden_dim),
				nn.ReLU6(inplace=True),
				# pw-linear
				nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
				nn.BatchNorm2d(oup),
			)

	def forward(self, x):
		if self.use_res_connect:
			return x + self.conv(x)
		else:
			return self.conv(x)


#------------------------------------------------------------------------------
#  Class of MobileNetV2
#------------------------------------------------------------------------------

class MobileNetV2(nn.Module):
	def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
		super(MobileNetV2, self).__init__()
		self.in_channels = in_channels
		self.num_classes = num_classes
		input_channel = 32
		last_channel = 1280
		interverted_residual_setting = [
			# t, c, n, s
			[1        , 16, 1, 1],
			[expansion, 24, 2, 2],
			[expansion, 32, 3, 2],
			[expansion, 64, 4, 2],
			[expansion, 96, 3, 1],
			[expansion, 160, 3, 2],
			[expansion, 320, 1, 1],
		]

		# building first layer
		input_channel = _make_divisible(input_channel*alpha, 8)
		self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
		self.features = [conv_bn(self.in_channels, input_channel, 2)]

		# building inverted residual blocks
		for t, c, n, s in interverted_residual_setting:
			output_channel = _make_divisible(int(c*alpha), 8)
			for i in range(n):
				if i == 0:
					self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
				else:
					self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
				input_channel = output_channel

		# building last several layers
		self.features.append(conv_1x1_bn(input_channel, self.last_channel))

		# make it nn.Sequential
		self.features = nn.Sequential(*self.features)

		# building classifier
		if self.num_classes is not None:
			self.classifier = nn.Sequential(
				nn.Dropout(0.2),
				nn.Linear(self.last_channel, num_classes),
			)

		# Initialize weights
		self._init_weights()

	def forward(self, x):
		# Stage1
		x = self.features[0](x)
		x = self.features[1](x)
		# Stage2
		x = self.features[2](x)
		x = self.features[3](x)
		# Stage3
		x = self.features[4](x)
		x = self.features[5](x)
		x = self.features[6](x)
		# Stage4
		x = self.features[7](x)
		x = self.features[8](x)
		x = self.features[9](x)
		x = self.features[10](x)
		x = self.features[11](x)
		x = self.features[12](x)
		x = self.features[13](x)
		# Stage5
		x = self.features[14](x)
		x = self.features[15](x)
		x = self.features[16](x)
		x = self.features[17](x)
		x = self.features[18](x)

		# Classification
		if self.num_classes is not None:
			x = x.mean(dim=(2,3))
			x = self.classifier(x)
			
		# Output
		return x

	def _load_pretrained_model(self, pretrained_file):
		pretrain_dict = torch.load(pretrained_file, map_location='cpu')
		model_dict = {}
		state_dict = self.state_dict()
		print("[MobileNetV2] Loading pretrained model...")
		for k, v in pretrain_dict.items():
			if k in state_dict:
				model_dict[k] = v
			else:
				print(k, "is ignored")
		state_dict.update(model_dict)
		self.load_state_dict(state_dict)

	def _init_weights(self):
		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
				m.weight.data.normal_(0, math.sqrt(2. / n))
				if m.bias is not None:
					m.bias.data.zero_()
			elif isinstance(m, nn.BatchNorm2d):
				m.weight.data.fill_(1)
				m.bias.data.zero_()
			elif isinstance(m, nn.Linear):
				n = m.weight.size(1)
				m.weight.data.normal_(0, 0.01)
				m.bias.data.zero_()