salt / main.py
AlexWortega's picture
Update main.py
bff356a verified
raw
history blame contribute delete
No virus
8.25 kB
import gradio as gr
import torch
import torchaudio
from transformers import AutoTokenizer, AutoModelForCausalLM
from speechtokenizer import SpeechTokenizer
from audiotools import AudioSignal
import bitsandbytes as bnb # Import bitsandbytes for INT8 quantization
import numpy as np
from uuid import uuid4
# Load the necessary models and tokenizers
model_path = "Vikhrmodels/salt-116k"
tokenizer = AutoTokenizer.from_pretrained(model_path)
print(tokenizer)
# Специальные токены
start_audio_token = "<soa>"
end_audio_token = "<eoa>"
end_sequence_token = "<eos>"
# Константы
n_codebooks = 3
max_seq_length = 1024
top_k = 20
from safetensors.torch import load_file
def convert_to_16_bit_wav(data):
if data.dtype == np.float32:
data = data / np.abs(data).max()
data = data * 32767
data = data.astype(np.int16)
elif data.dtype == np.int32:
data = data / 65538
data = data.astype(np.int16)
elif data.dtype == np.int16:
pass
elif data.dtype == np.uint8:
data = data * 257 - 32768
data = data.astype(np.int16)
else:
raise ValueError("Audio data cannot be converted to 16-bit int format.")
return data
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model with INT8 quantization
model = AutoModelForCausalLM.from_pretrained(
model_path,
cache_dir=".",
load_in_8bit=False, # Enable loading in INT8
device_map="auto" # Automatically map model to available devices
)
# Configurations for Speech Tokenizer
config_path = "audiotokenizer/speechtokenizer_hubert_avg_config.json"
ckpt_path = "audiotokenizer/SpeechTokenizer.pt"
quantizer = SpeechTokenizer.load_from_checkpoint(config_path, ckpt_path)
quantizer.eval()
# Freeze layers in the quantizer
def freeze_entire_model(model):
for n, p in model.named_parameters():
p.requires_grad = False
return model
for n, child in quantizer.named_children():
child.to(device)
child = freeze_entire_model(child)
# Create padding tokens for audio
def get_audio_padding_tokens(quantizer):
audio = torch.zeros((1, 1, 1)).to(device)
codes = quantizer.encode(audio)
del audio
torch.cuda.empty_cache()
return {"audio_tokens": codes.squeeze(1)}
# Decode audio from tokens
def decode_audio(tokens, quantizer, pad_tokens, n_original_tokens):
start = torch.nonzero(tokens == tokenizer(start_audio_token)["input_ids"][-1])
end = torch.nonzero(tokens == tokenizer(end_audio_token)["input_ids"][-1])
start = start[0, -1] + 1 if len(start) else 0
end = end[0, -1] if len(end) else tokens.shape[-1]
audio_tokens = tokens[start:end] % n_original_tokens
reminder = audio_tokens.shape[-1] % n_codebooks
if reminder:
audio_tokens = torch.cat([audio_tokens, pad_tokens[reminder:n_codebooks]], dim=0)
transposed = audio_tokens.view(-1, n_codebooks).t()
codes = transposed.view(n_codebooks, 1, -1).to(device)
audio = quantizer.decode(codes).squeeze(0)
torch.cuda.empty_cache()
xp = str(uuid4())+'.wav'
AudioSignal(audio.detach().cpu().numpy(),quantizer.sample_rate).write(xp)
return xp
# Inference functions
def infer_text_to_audio(text):
max_seq_length=1024
top_k=20
print(type(tokenizer))
print(text)
text_tokenized = tokenizer(str(text), return_tensors="pt")
text_input_tokens = text_tokenized["input_ids"].to(device)
soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
text_tokens = torch.cat([text_input_tokens, soa], dim=1)
attention_mask = torch.ones(text_tokens.size(), device=device)
output_audio_tokens = model.generate(text_tokens, attention_mask=attention_mask, max_new_tokens=max_seq_length, top_k=top_k, do_sample=True)
padding_tokens = get_audio_padding_tokens(quantizer)["audio_tokens"].to(device)
audio_signal = decode_audio(output_audio_tokens[0], quantizer, padding_tokens.t()[0], len(tokenizer) - 1024)
return audio_signal
def infer_audio_to_text(audio_path):
max_seq_length=1024
top_k=20
audio_data, sample_rate = torchaudio.load(audio_path)
audio = audio_data.view(1, 1, -1).float().to(device)
codes = quantizer.encode(audio)
n_codebooks_a = 1
raw_audio_tokens = codes[:, :n_codebooks_a] + len(tokenizer) - 1024
soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
audio_tokens = torch.cat([soa, raw_audio_tokens.view(1, -1), eoa], dim=1)
attention_mask = torch.ones(audio_tokens.size(), device=device)
output_text_tokens = model.generate(audio_tokens, attention_mask=attention_mask, max_new_tokens=max_seq_length, top_k=top_k, do_sample=True)
output_text_tokens = output_text_tokens.cpu()[0]
output_text_tokens = output_text_tokens[output_text_tokens < tokenizer(start_audio_token)["input_ids"][-1]]
decoded_text = tokenizer.decode(output_text_tokens, skip_special_tokens=True)
return decoded_text
# Functions for Gradio Interface
def infer_text_to_audio_gr(text):
audio_signal = infer_text_to_audio(text.strip().upper(), model, tokenizer, quantizer)
return audio_signal
def infer_audio_to_text_gr(audio_path):
generated_text = infer_audio_to_text(audio_path, model, tokenizer, quantizer)
return generated_text
# Gradio Interface
text_to_audio_interface = gr.Interface(
fn=infer_text_to_audio_gr,
inputs=gr.Textbox(label="Input Text"),
outputs=gr.Audio(label="Audio Answer"),
title="T2S",
description="Model in text to audio mode",
allow_flagging='never',
)
audio_to_text_interface = gr.Interface(
fn=infer_audio_to_text_gr,
inputs=gr.Audio(type="filepath", label="Input Audio"),
outputs=gr.Textbox(label="Text Answer"),
title="S2T",
description="Model in audio to text mode",
allow_flagging='never'
)
# Gradio Demo
#demo = gr.TabbedInterface([text_to_audio_interface, audio_to_text_interface], ["Text - Audio", "Audio - Text"])
# Custom CSS for centered links
custom_css = """
<style>
.center {
text-align: center;
}
</style>
"""
# Add Gradio description with centered links
description = f"""
# **Salt: Speech And Language Transformer**
Welcome to the demo of **Salt**, a speech and language model. Vikhr Salt is capable of both **Text-to-Speech (T2S)** and **Speech-to-Text (S2T)** tasks, making it a versatile tool for transforming language into speech and vice versa. Built on a pre-trained large language model, Vikhr Salt incorporates audio tokens using cutting-edge techniques like **Encodec** and **SpeechTokenizer**, enabling robust performance across multiple modalities.
## **🛠 Features**
- **Text-to-Speech (T2S)**: Enter text and generate high-quality audio outputs.
- **Speech-to-Text (S2T)**: Upload an audio file and convert it into accurate text.
## **🚀 Try it out:**
Explore the tabs to try the **Text - Audio** and **Audio - Text** modes!
### **📄 Preprint**
[Read the paper](https://docs.google.com/document/d/1ZvV47W4BCyZM_JfDC1BKj-0ozwPck5t2yNB8jORVshI/edit?usp=sharing)
### **📂 Code**
[Explore the code](https://github.com/VikhrModels/Vikhr4o)
"""
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Text - Audio"):
gr.Markdown("### Text-to-Speech (T2S) Mode")
input_text = gr.Textbox(label="Input Text")
output_audio = gr.Audio(label="Audio Answer")
generate_button = gr.Button("Generate")
generate_button.click(infer_text_to_audio, inputs=input_text, outputs=output_audio)
with gr.TabItem("Audio - Text"):
gr.Markdown("### Speech-to-Text (S2T) Mode")
input_audio = gr.Audio(type="filepath", label="Input Audio")
output_text = gr.Textbox(label="Text Answer")
generate_button = gr.Button("Generate")
generate_button.click(infer_audio_to_text, inputs=input_audio, outputs=output_text)
# Launch the demo
demo.launch(share=True)