File size: 8,525 Bytes
3a3bedb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# chainlit import
import chainlit as cl

# External Libraries
import pandas as pd
from sqlalchemy import create_engine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field

# llama_index Imports
import chromadb
from llama_index import (
    ServiceContext,
    SQLDatabase,
    VectorStoreIndex,
)
from llama_index.agent import OpenAIAgent
from llama_index.callbacks.base import CallbackManager
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.llms import OpenAI
from llama_index.node_parser.simple import SimpleNodeParser
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.retrievers import VectorIndexRetriever
from llama_index.storage.storage_context import StorageContext
from llama_index.tools import FunctionTool
from llama_index.tools.query_engine import QueryEngineTool
from llama_index.vector_stores import ChromaVectorStore
from llama_index.vector_stores.types import (
    VectorStoreInfo,
    MetadataInfo,
    ExactMatchFilter,
    MetadataFilters,
)
import logging
import os
import openai
import json
import nest_asyncio

nest_asyncio.apply()

# Set up logging for debugging and monitoring
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

openai.api_key = os.environ.get("OPENAI_API_KEY")

# try:
#     # rebuild storage context
#     storage_context = StorageContext.from_defaults(persist_dir="./storage")
#     # load index
#     index = load_index_from_storage(storage_context)
# except:
#     from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader

#     documents = SimpleDirectoryReader("./data").load_data()
#     index = GPTVectorStoreIndex.from_documents(documents)
#     index.storage_context.persist()


@cl.on_chat_start
async def init():

    #### Context Setting w/ `ServiceContext`
    
    embed_model = OpenAIEmbedding()
    chunk_size = 2048
    llm = OpenAI(
        temperature=0, 
        model="gpt-3.5-turbo", 
        streaming=True
    )
    
    service_context = ServiceContext.from_defaults(
        llm=llm, 
        chunk_size=chunk_size, 
        embed_model=embed_model,
        callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
    )
    
    text_splitter = TokenTextSplitter(
        chunk_size=chunk_size
    )
    
    node_parser = SimpleNodeParser(
        text_splitter=text_splitter
    )
    
    # ### BarbenHeimer Wikipedia Retrieval Tool w/ `QueryEngine`!
    # #### ChromaDB
    
    chroma_client = chromadb.Client()
    chroma_collection = chroma_client.get_or_create_collection("wikipedia_barbie_opp")
    
    vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
    
    movie_list = ["Barbie (film)", "Oppenheimer (film)"]
    wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)
    
    # #### Node Construction
    
    for movie, wiki_doc in zip(movie_list, wiki_docs):
        nodes = node_parser.get_nodes_from_documents([wiki_doc])
        for node in nodes:
            node.metadata = {"title" : movie}
        wiki_vector_index.insert_nodes(nodes)
    
    # #### Auto Retriever Functional Tool
    # First, we need to create our `VectoreStoreInfo` object which will hold all the relevant metadata we need for each component (in this case title metadata).
    
    top_k = 3
    
    vector_store_info = VectorStoreInfo(
        content_info="semantic information about movies",
        metadata_info=[MetadataInfo(
            name="title",
            type="str",
            description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
        )]
    )
    
    # Now we'll create our base PyDantic object that we can use to ensure compatability with our application layer. This verifies that the response from the OpenAI endpoint conforms to this schema.
    class AutoRetrieveModel(BaseModel):
        query: str = Field(..., description="natural language query string")
        filter_key_list: List[str] = Field(
            ..., description="List of metadata filter field names"
        )
        filter_value_list: List[str] = Field(
            ...,
            description=(
                "List of metadata filter field values (corresponding to names specified in filter_key_list)"
            )
        )
    
    # Now we can build our function that we will use to query the functional endpoint.
    # >The `docstring` is important to the functionality of the application.
    def auto_retrieve_fn(
        query: str, filter_key_list: List[str], filter_value_list: List[str]
    ):
        """Auto retrieval function.
        Performs auto-retrieval from a vector database, and then applies a set of filters.
        """
        query = query or "Query"
    
        exact_match_filters = [
            ExactMatchFilter(key=k, value=v)
            for k, v in zip(filter_key_list, filter_value_list)
        ]
        retriever = VectorIndexRetriever(
            wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
        )
        query_engine = RetrieverQueryEngine.from_args(retriever)
    
        response = query_engine.query(query)
        return str(response)
    
    # Now we need to wrap our system in a tool in order to integrate it into the larger application.
    description = f"""\
    Use this tool to look up semantic information about films.
    The vector database schema is given below:
    {vector_store_info.json()}
    """
    
    auto_retrieve_tool = FunctionTool.from_defaults(
        fn=auto_retrieve_fn,
        name="auto_retrieve_tool",
        description=description,
        fn_schema=AutoRetrieveModel,
    )
    
    # All that's left to do is attach the tool to an OpenAIAgent and let it rip!
    
    # ### BarbenHeimer SQL Tool
    
    barbie_df = pd.read_csv("barbie_data/barbie.csv")
    oppenheimer_df = pd.read_csv("oppenheimer_data/oppenheimer.csv")
    
    # #### Create SQLAlchemy engine with SQLite
    
    engine = create_engine("sqlite+pysqlite:///:memory:")
    
    # #### Convert `pd.DataFrame` to SQL tables
    
    barbie_df.to_sql(
        "barbie",
        engine
    )
    
    oppenheimer_df.to_sql(
        "oppenheimer",
        engine
    )
    
    # #### Construct a `SQLDatabase` index
    
    sql_database = SQLDatabase(
        engine, 
        include_tables=["barbie", "oppenheimer"])
    
    # #### Create the NLSQLTableQueryEngine interface for all added SQL tables
    
    sql_query_engine = NLSQLTableQueryEngine(
        sql_database=sql_database,
        tables=["barbie", "oppenheimer"]
    )
    
    # #### Wrap It All Up in a `QueryEngineTool`
    
    sql_tool = QueryEngineTool.from_defaults(
        query_engine=sql_query_engine,
        name="sql_tool",
        description=(
            """Useful for translating a natural language query into a SQL query over a table containing:
            1. barbie, containing information related to reviews of the Barbie movie.
            2. oppenheimer, containing information related to reviews of the Oppenheimer movie."""
        ),
    )
    
    # ### Combining The Tools Together
    # Now, we can simple add our tools into the `OpenAIAgent`, and off we go!
    
    barbenheimer_agent = OpenAIAgent.from_tools(
        [sql_tool, auto_retrieve_tool], llm=llm, verbose=True
    )

    cl.user_session.set("query_engine", barbenheimer_agent)


@cl.on_message
async def main(message):
    query_engine = cl.user_session.get("query_engine")  # type: RetrieverQueryEngine
    logger.info(f"Received message: {message}")
    
    response = query_engine.query(message)
    logger.info("Response object created")

    # response_message = cl.Message(content="")

    # # for token in response.response_gen:
    # for token in response.response_gen:
    #     response_message.stream_token(token=token)

    # if response.response_txt:
        # response_message.content = response.response_txt
    # response_message.content = response

    # await response_message.send()
    # logger.info(f"Response: {response}")
    await cl.Message(content=json.dumps(f"{response}")).send()