import gradio as gr import onnxruntime as ort import numpy as np from PIL import Image, ImageDraw import cv2 image_size = 224 def normalize_image(image, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): image = (image/255.0).astype("float32") image[:, :, 0] = (image[:, :, 0] - mean[0]) / std[0] image[:, :, 1] = (image[:, :, 1] - mean[1]) / std[1] image[:, :, 2] = (image[:, :, 2] - mean[2]) / std[2] return image def resize_longest_max_size(image, max_size=224): height, width = image.shape[:2] if width > height: ratio = max_size / width else: ratio = max_size / height new_width = int(width * ratio) new_height = int(height * ratio) resized_image = cv2.resize(image, (new_width, new_height), cv2.INTER_LINEAR) return resized_image def pad_if_needed(image, target_size): height, width, _ = image.shape y0 = abs((height-target_size)//2) x0 = abs((width-target_size)//2) background = np.zeros((target_size, target_size, 3), dtype="uint8") background[y0:(y0+height), x0:(x0+width), :] = image return(background) def heatmap2keypoints(heatmap: np.ndarray, image_size: int = 224) -> list: "Function to convert heatmap to keypoint x, y tensor" indx = heatmap.reshape(-1, image_size*image_size).argmax(axis=1) row = indx // image_size col = indx % image_size keypoints_array = np.stack((col, row), axis=1) keypoints_list = keypoints_array.tolist() return keypoints_list def centercrop_keypoints(keypoints, crop_height, crop_width, image_height, image_width): y_diff = (image_height-crop_height)//2 x_diff = (image_width-crop_width)//2 keypoints_crop = [[x-x_diff, y-y_diff] for x, y in keypoints] return(keypoints_crop) def resize_keypoints(keypoints, current_height, current_width, target_height, target_width): keypoints_resize = [] for x, y in keypoints: x_resize = (x/current_width)*target_width y_resize = (y/current_height)*target_height keypoints_resize.append([int(x_resize), int(y_resize)]) return(keypoints_resize) def draw_keypoints(image, keypoints): draw = ImageDraw.Draw(image) w, h = image.size for keypoint in keypoints: x, y = keypoint # Draw a small circle at each keypoint radius = int(min(w, h) * 0.01) draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill='red', outline='red') return image def point_dist(p0, p1): x0, y0 = p0 x1, y1 = p1 dist = ((x0-x1)**2 + (y0-y1)**2)**0.5 return dist def receipt_asp_ratio(keypoints, mode = "mean"): h0 = point_dist(keypoints[0], keypoints[3]) h1 = point_dist(keypoints[1], keypoints[2]) w0 = point_dist(keypoints[0], keypoints[1]) w1 = point_dist(keypoints[2], keypoints[3]) if mode == "max": h = max(h0, h1) w = max(w0, w1) elif mode == "mean": h = (h0+h1)/2 w = (w0+w1)/2 else: return("UNKNOWN MODE") return w/h # Load the ONNX model session = ort.InferenceSession("models/timm-mobilenetv3_small_100.onnx") input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name # Main function to handle the image input, apply preprocessing, run the model, and apply postprocessing def process_image(input_image): # Convert PIL image to OpenCV image image = np.array(input_image.convert("RGB")) h, w, _ = image.shape # Preprocess the image image_resize = resize_longest_max_size(image) h_small, w_small, _ = image_resize.shape image_pad = pad_if_needed(image_resize, target_size=image_size) image_norm = normalize_image(image_pad) image_array = np.transpose(image_norm, (2, 0, 1)) image_array = np.expand_dims(image_array, axis=0) # Run model inference output = session.run([output_name], {input_name: image_array}) output_keypoints = heatmap2keypoints(output[0].squeeze()) crop_keypoints = centercrop_keypoints(output_keypoints, h_small, w_small, image_size, image_size) large_keypoints = resize_keypoints(crop_keypoints, h_small, w_small, h, w) # Draw keypoints on the image image_with_keypoints = draw_keypoints(input_image, large_keypoints) persp_h = 1024 persp_asp = receipt_asp_ratio(large_keypoints, mode="max") persp_w = int(persp_asp*persp_h) origin_points = np.float32([[x, y] for x, y in large_keypoints]) target_points = np.float32([[0, 0], [persp_w-1, 0], [persp_w-1, persp_h-1], [0, persp_h-1]]) persp_matrix = cv2.getPerspectiveTransform(origin_points, target_points) persp_image = cv2.warpPerspective(image, persp_matrix, (persp_w, persp_h), cv2.INTER_LINEAR) output_image = Image.fromarray(persp_image) return image_with_keypoints, output_image demo_images = [ "demo_images/image_1.jpg", "demo_images/image_2.jpg", "demo_images/image_3.jpg", "demo_images/image_flux_1.png", "demo_images/image_flux_2.png", ] # Create Gradio interface with gr.Blocks() as iface: gr.Markdown("# Document corner detection and perspective correction") gr.Markdown("Upload an image to detect the corners of a document and correct the perspective.\n\nUses a UNet model to detect corners and OpenCV to correct the perspective.") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Image", show_label=True, scale=1) with gr.Column(): output_image1 = gr.Image(type="pil", label="Image with predicted corners", show_label=True, scale=1) with gr.Column(): output_image2 = gr.Image(type="pil", label="Image with perspective correction", show_label=True, scale=1) with gr.Row(): examples = gr.Examples(demo_images, input_image, cache_examples=False, label="Exampled documents (CORD dataset and FLUX.1-schnell generated)") input_image.change(fn=process_image, inputs=input_image, outputs=[output_image1, output_image2]) gr.Markdown("Created by Kenneth Thorø Martinsen (kenneth2810@gmail.com)") iface.launch()