zhanghaoji
init
eb0678a
raw
history blame contribute delete
No virus
41.6 kB
# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors.
# ------------------------------------------------------------------------
# Based on https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import math
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.multiprocessing import Lock, Manager
from abc import ABC, abstractmethod
from flash_vstream.model.multimodal_encoder.builder import build_vision_tower
from flash_vstream.model.multimodal_projector.builder import build_vision_projector
from flash_vstream.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from flash_vstream.model.compress_functions import drop_feature, merge_feature, kmeans_feature, weighted_kmeans_feature, k_drop_feature, k_merge_feature, attention_feature
class NeuralTuringMachine(nn.Module):
def __init__(self, input_dim=1024, output_dim=1024, attention_dropout=0.1):
super(NeuralTuringMachine, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.q_proj = nn.Linear(input_dim, output_dim)
self.k_proj = nn.Linear(input_dim, output_dim)
self.v_proj = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(attention_dropout)
self.out_proj = nn.Linear(output_dim, input_dim)
self.out_dropout = nn.Dropout(attention_dropout)
self.out_ln = nn.LayerNorm(input_dim, eps=1e-12)
def get_weight(self, x, y):
query = self.q_proj(x)
key = self.k_proj(y)
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim)
weight = F.softmax(scores, dim=-1)
return weight
def forward(self, x, y):
query = self.q_proj(x)
key = self.k_proj(y)
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim)
weight = F.softmax(scores, dim=-1)
attn = self.dropout(weight)
value = self.v_proj(y)
output = torch.matmul(attn, value)
output = self.out_proj(output)
output = self.out_dropout(output)
output = self.out_ln(output.unsqueeze(0)).squeeze(0)
return output
class VStreamMetaModel:
def __init__(self, config):
super(VStreamMetaModel, self).__init__(config)
self.mm_input_dim = config.mm_hidden_size
if getattr(config, 'mm_use_4_vision_tokens', False):
self.mm_input_dim = self.mm_input_dim * 4
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config, self.mm_input_dim)
compress_Turing_hidden_dim = getattr(self.config, "compress_Turing_hidden_dim", 32)
self.attention_model = NeuralTuringMachine(self.mm_input_dim, compress_Turing_hidden_dim)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.compress_type = getattr(model_args, "compress_type", None)
self.config.compress_size = getattr(model_args, "compress_size", 1)
self.config.compress_long_memory_size = getattr(model_args, "compress_long_memory_size", 1)
self.config.compress_Turing_memory_size = getattr(model_args, "compress_Turing_memory_size", 1)
self.config.compress_Turing_update_ratio = getattr(model_args, "compress_Turing_update_ratio", 0.2)
self.config.video_max_frames = getattr(model_args, "video_max_frames", 50)
self.config.video_long_memory_length = getattr(model_args, "video_long_memory_length", 10)
self.config.video_Turing_memory_length = getattr(model_args, "video_Turing_memory_length", 10)
self.config.video_short_memory_length = getattr(model_args, "video_short_memory_length", 10)
self.config.video_current_memory_length = getattr(model_args, "video_current_memory_length", 1)
self.config.video_sample_type = getattr(model_args, "video_sample_type", "center")
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
class VStreamMetaForCausalLM(ABC):
def __init__(self, config):
super(VStreamMetaForCausalLM, self).__init__(config)
# support video streaming mode
self.use_video_streaming_mode = False
self.video_embedding_memory = None # set to torch.multiprocessing.Manager.list() when launching
self.video_embedding_mem_lock = Lock()
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
return image_features
def reshape_2x2_image_features(self, image_features):
B, P, D = image_features.shape
patch_size = round(math.sqrt(P))
assert patch_size % 2 == 0, "Patch size must be divisible by 2."
image_features = image_features.reshape(B, patch_size, patch_size, D)
image_features_2x2 = image_features.reshape(B, patch_size // 2, 2, patch_size // 2, 2, D)
image_features_2x2 = image_features_2x2.permute(0, 1, 3, 2, 4, 5)
image_features_2x2 = image_features_2x2.reshape(B, patch_size // 2, patch_size // 2, 4 * D) # concat 2x2 neighbor patches
image_features = image_features_2x2.reshape(B, (patch_size // 2) ** 2, 4 * D)
return image_features
def attention(self, turing_memory, new_feature, update_ratio=0.2):
T1, D1 = turing_memory.shape
T2, D2 = new_feature.shape
assert D1 == D2, f"dimmension not match, {D1} != {D2}"
model = self.get_model().attention_model
weight = model.get_weight(turing_memory, new_feature)
weight = weight * update_ratio # [T1, T2]
decay = weight.sum(dim=1, keepdim=True) # [T0*P, 1], 表示当前NTM memory和新来的feat的相似度
turing_memory = turing_memory * (1 - decay) + torch.mm(weight, new_feature)
return turing_memory
def attention2(self, turing_memory, new_feature, update_ratio=0.2): # deprecated
T1, D1 = turing_memory.shape
T2, D2 = new_feature.shape
assert D1 == D2, f"dimmension not match, {D1} != {D2}"
model = self.get_model().attention_model
turing_memory = model.forward(turing_memory, new_feature)
return turing_memory
def compress_spatial_features(self, image_features, compress_size=1):
compress_type = getattr(self.config, "compress_type", None)
patch_size = round(math.sqrt(image_features.shape[1]))
assert patch_size * patch_size == image_features.shape[1], f"For ViT feature map, {patch_size}*{patch_size}={patch_size**2} != {image_features.shape[1]}"
if patch_size == compress_size:
return image_features
elif compress_type is not None:
if 'mean' in self.config.compress_type:
# TODO: currently use 1 token per frame (or image), direct poolt
if compress_size == 1:
image_features = image_features.mean(dim=1, keepdim=True)
else:
image_features = image_features.view(-1, patch_size, patch_size, image_features.shape[-1])
image_features = image_features.permute(0, 3, 1, 2) # [B*T, D, P, P]
pooled_features = F.avg_pool2d(image_features, (patch_size // compress_size, patch_size // compress_size))
pooled_features = pooled_features.permute(0, 2, 3, 1) # [B*T, P, P, D]
image_features = pooled_features.view(-1, compress_size * compress_size, pooled_features.shape[-1])
else:
raise NotImplementedError(f"`compress_type` {self.config.compress_type} is not supported yet.")
return image_features
def compress_temporal_features(self, image_features):
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10)
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10)
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1)
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1)
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1)
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2)
compress_fn_dic = {
'drop': drop_feature,
'merge': merge_feature,
'kmeans': kmeans_feature,
'weighted_kmeans': weighted_kmeans_feature,
'kdrop': k_drop_feature,
'kmerge': k_merge_feature,
'attention': attention_feature,
}
compress_type = self.config.video_sample_type
if compress_type in compress_fn_dic:
compress_fn = compress_fn_dic[compress_type]
else:
raise NotImplementedError(f'max_length = {self.config.video_max_frames},'
f'while video_sample_type = {compress_type} is not supported yet.')
new_image_features = []
step_indices = []
step_features = []
for img_feature in image_features: # [T, P*P, D]
cur_start = min(video_current_memory_length, img_feature.shape[0])
### Calc Spatial Memory
if cur_start == 0:
cur_memory = img_feature[:0]
long_memory = img_feature
Turing_memory = img_feature
else:
cur_memory = img_feature[-cur_start:] # [C, P*P, D]
long_memory = img_feature[:-cur_start] # [L, P*P, D]
Turing_memory = img_feature[:-cur_start] # [L, P*P, D]
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]:
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L, P'*P', D]
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]:
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L, P'*P', D]
### Calc Temporal Memory
if video_long_memory_length == 0 or long_memory.shape[0] == 0:
long_memory_compreesed = long_memory[:0]
else:
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) # [L_long, P'*P', D], [L_long]
### Calc Retrieved Memory
sorted_indices = torch.argsort(weight, descending=True) # [L_long]
key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D]
key_length = 3
if key_centroids.shape[0] > key_length:
key_centroids = key_centroids[:key_length]
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L]
min_indices = torch.argmin(dists, dim=0) # [k_L]
key_memory = img_feature[min_indices]
cur_memory = torch.cat([key_memory, cur_memory], dim=0)
### Calc Abstract Memory
if video_Turing_memory_length == 0 or Turing_memory.shape[0] == 0:
Turing_memory_compreesed = Turing_memory[:0]
else:
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio)
memory_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0)
new_image_features.append(memory_feature)
return new_image_features
def cat_proj(self, all_features): # concatenate features and project them together
feature_split_size = [x.shape[0] for x in all_features]
feature_embed = torch.cat(all_features, dim=0)
feature_proj = self.get_model().mm_projector(feature_embed)
feature_proj = torch.split(feature_proj, feature_split_size, dim=0)
return feature_proj
def prepare_inputs_labels_for_multimodal(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
features
):
vision_tower = self.get_vision_tower()
if vision_tower is None or (images is None and features is None) or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and ((images is not None) or (features is not None)) and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
if target_shape - attention_mask.shape[1] >= 0:
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
elif target_shape - attention_mask.shape[1] < 0:
attention_mask = attention_mask[:, :target_shape]
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if (features is not None) or (type(images) is list) or (images.ndim == 5):
compress_size = getattr(self.config, "compress_size", 1)
if images is not None:
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W]
concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W]
image_features = self.encode_images(concat_images) # [B*T, P, D]
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D]
image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D]
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D]
else:
image_features = [feat if len(feat.shape) == 3 else feat.unsqueeze(0) for feat in features]
origin_img_features = image_features
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = [self.reshape_2x2_image_features(img_feature) for img_feature in image_features] # [B*T, P/4, 4*D]
image_features = [self.compress_spatial_features(image_feature, compress_size) for image_feature in image_features] # [B*T, P', D]
# perform memory consolidation
image_features = self.compress_temporal_features(image_features) # [B, TP, D]
image_features = [x.to(self.device) for x in image_features] # [B, TP, D]
image_features = self.cat_proj(image_features)
else:
image_features = self.encode_images(images).to(self.device) # [B, 576, 2048]
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D]
image_features = self.get_model().mm_projector(image_features)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
assert cur_image_idx == batch_idx + 1
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def prepare_inputs_labels_for_multimodal_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels
):
assert self.use_video_streaming_mode
logger = logging.getLogger(__name__)
vision_tower = self.get_vision_tower()
if vision_tower is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
if target_shape - attention_mask.shape[1] >= 0:
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
elif target_shape - attention_mask.shape[1] < 0:
attention_mask = attention_mask[:, :target_shape]
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# Have some tries to avoid deadlock
attempt_times = 0
while attempt_times < 300:
try:
with self.video_embedding_mem_lock:
cur_memory, long_memory_compreesed, Turing_memory_compreesed, _ = self.video_embedding_memory
logger.info(f'Read cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}')
image_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0)
image_features = [image_feature.to(self.device)]
break
except Exception as e:
logger.error(f'Attempt:{attempt_times} Failed to get video features, Error: {e}')
image_features = []
time.sleep(0.1)
attempt_times += 1
image_features = [x.to(self.device) for x in image_features] # [B, TP, D]
image_features = self.cat_proj(image_features)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
assert cur_image_idx == batch_idx + 1
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def embed_video_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1
self,
images
):
assert self.use_video_streaming_mode
logger = logging.getLogger(__name__)
compress_size = getattr(self.config, "compress_size", 1)
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10)
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10)
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1)
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1)
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1)
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2)
compress_fn_dic = {
'drop': drop_feature,
'merge': merge_feature,
'kmeans': kmeans_feature,
'weighted_kmeans': weighted_kmeans_feature,
'kdrop': k_drop_feature,
'kmerge': k_merge_feature,
'uni_kmerge': k_merge_feature,
'both_kmerge': k_merge_feature,
'split_kmerge': k_merge_feature,
'attention': attention_feature,
}
if type(images) is list or images.ndim == 5:
assert len(images) == 1
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W]
concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W]
image_features = self.encode_images(concat_images) # [B*T, P, D]
image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D]
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D]
else:
raise NotImplementedError('Should input video frames, not a single image')
image_feature = image_features[0].detach().to(torch.float16).to(self.device) # [T, P, D]
img_feature_buffer = image_feature.cpu()
cur_start = min(video_current_memory_length, image_feature.shape[0])
if cur_start == 0:
cur_memory = image_feature[:0]
else:
cur_memory = image_feature[-cur_start:] # [L_c, P*P, D]
long_memory = image_feature
Turing_memory = image_feature
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]:
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L_l, P'*P', D]
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]:
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L_t, P'*P', D]
compress_type = self.config.video_sample_type
if compress_type in compress_fn_dic:
compress_fn = compress_fn_dic[compress_type]
else:
raise NotImplementedError(f'max_length = {self.config.video_max_frames},'
f'while video_sample_type = {compress_type} is not supported yet.')
long_memory_compreesed = long_memory
Turing_memory_compreesed = Turing_memory
# Read old memory from shared memory, do not need an I/O lock
if self.video_embedding_memory is not None and len(self.video_embedding_memory) > 0:
old_cur_memory, old_long_memory_compreesed, old_Turing_memory_compreesed, old_img_feature_buffer = self.video_embedding_memory
old_long_memory_compreesed = old_long_memory_compreesed.to(self.device)
old_Turing_memory_compreesed = old_Turing_memory_compreesed.to(self.device)
img_feature_buffer = torch.cat([old_img_feature_buffer, image_feature.cpu()], dim=0)
assert isinstance(old_long_memory_compreesed, torch.Tensor) and old_long_memory_compreesed.shape[1:] == long_memory_compreesed.shape[1:]
long_memory = torch.cat((old_long_memory_compreesed, long_memory_compreesed), dim=0)
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length)
# Retrive key frames
sorted_indices = torch.argsort(weight, descending=True) # [L_long]
key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D]
key_length = 3
if key_centroids.shape[0] > key_length:
key_centroids = key_centroids[:key_length]
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L]
min_indices = torch.argmin(dists, dim=0) # [k_L]
key_memory = img_feature_buffer[min_indices.cpu()].to(self.device)
cur_memory = torch.cat([key_memory, cur_memory], dim=0)
Turing_memory = torch.cat((old_Turing_memory_compreesed, Turing_memory_compreesed), dim=0)
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio)
# Write to shared memory, need an I/O lock
with self.video_embedding_mem_lock:
self.video_embedding_memory[:] = [cur_memory.cpu(), long_memory_compreesed.cpu(), Turing_memory_compreesed.cpu(), img_feature_buffer] # Only change content
logger.info(f'Write cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}')
return []
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False