# coding=utf-8 # Copyright 2023 The Taming Transformers Authors and The HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial from typing import Tuple import os import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from vqvae.modeling_utils import ConfigMixin, ModelMixin, register_to_config class Upsample(nn.Module): def __init__(self, in_channels: int, with_conv: bool): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, hidden_states): hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest") if self.with_conv: hidden_states = self.conv(hidden_states) return hidden_states class Downsample(nn.Module): def __init__(self, in_channels: int, with_conv: bool): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, hidden_states): if self.with_conv: pad = (0, 1, 0, 1) # pad height and width dim hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0) hidden_states = self.conv(hidden_states) else: hidden_states = torch.nn.functional.avg_pool2d(hidden_states, kernel_size=2, stride=2) return hidden_states class ResnetBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int = None, use_conv_shortcut: bool = False, dropout_prob: float = 0.0, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels self.use_conv_shortcut = use_conv_shortcut self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.conv1 = nn.Conv2d( self.in_channels, self.out_channels_, kernel_size=3, stride=1, padding=1, ) self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True) self.dropout = nn.Dropout(dropout_prob) self.conv2 = nn.Conv2d( self.out_channels_, self.out_channels_, kernel_size=3, stride=(1, 1), padding=1, ) if self.in_channels != self.out_channels_: if use_conv_shortcut: self.conv_shortcut = nn.Conv2d( self.in_channels, self.out_channels_, kernel_size=3, stride=1, padding=1, ) else: self.nin_shortcut = nn.Conv2d( self.in_channels, self.out_channels_, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels_: if self.use_conv_shortcut: residual = self.conv_shortcut(residual) else: residual = self.nin_shortcut(residual) return hidden_states + residual class AttnBlock(nn.Module): def __init__(self, in_channels: int): super().__init__() self.in_channels = in_channels conv = partial(nn.Conv2d, self.in_channels, self.in_channels, kernel_size=1, stride=1, padding=0) self.norm = nn.GroupNorm(num_groups=32, num_channels=self.in_channels, eps=1e-6, affine=True) self.q, self.k, self.v = conv(), conv(), conv() self.proj_out = conv() def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm(hidden_states) query = self.q(hidden_states) key = self.k(hidden_states) value = self.v(hidden_states) # compute attentions batch, channels, height, width = query.shape query = query.reshape((batch, channels, height * width)) query = query.permute(0, 2, 1) # (b, hw, c) key = key.reshape((batch, channels, height * width)) attn_weights = torch.bmm(query, key) # b,hw,hw attn_weights = attn_weights * (int(channels) ** -0.5) attn_weights = nn.functional.softmax(attn_weights, dim=2) # attend to values value = value.reshape((batch, channels, height * width)) attn_weights = attn_weights.permute(0, 2, 1) hidden_states = torch.bmm(value, attn_weights) hidden_states = hidden_states.reshape((batch, channels, height, width)) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states + residual return hidden_states class UpsamplingBlock(nn.Module): def __init__(self, config, curr_res: int, block_idx: int): super().__init__() self.config = config self.block_idx = block_idx self.curr_res = curr_res if self.block_idx == self.config.num_resolutions - 1: block_in = self.config.hidden_channels * self.config.channel_mult[-1] else: block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1] block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] res_blocks = [] attn_blocks = [] for _ in range(self.config.num_res_blocks + 1): res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) block_in = block_out if self.curr_res in self.config.attn_resolutions: attn_blocks.append(AttnBlock(block_in)) self.block = nn.ModuleList(res_blocks) self.attn = nn.ModuleList(attn_blocks) self.upsample = None if self.block_idx != 0: self.upsample = Upsample(block_in, self.config.resample_with_conv) def forward(self, hidden_states): for i, res_block in enumerate(self.block): hidden_states = res_block(hidden_states) if len(self.attn) > 1: hidden_states = self.attn[i](hidden_states) if self.upsample is not None: hidden_states = self.upsample(hidden_states) return hidden_states class DownsamplingBlock(nn.Module): def __init__(self, config, curr_res: int, block_idx: int): super().__init__() self.config = config self.curr_res = curr_res self.block_idx = block_idx in_channel_mult = (1,) + tuple(self.config.channel_mult) block_in = self.config.hidden_channels * in_channel_mult[self.block_idx] block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] res_blocks = nn.ModuleList() attn_blocks = nn.ModuleList() for _ in range(self.config.num_res_blocks): res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) block_in = block_out if self.curr_res in self.config.attn_resolutions: attn_blocks.append(AttnBlock(block_in)) self.block = res_blocks self.attn = attn_blocks self.downsample = None if self.block_idx != self.config.num_resolutions - 1: self.downsample = Downsample(block_in, self.config.resample_with_conv) def forward(self, hidden_states): for i, res_block in enumerate(self.block): hidden_states = res_block(hidden_states) if len(self.attn) > 1: hidden_states = self.attn[i](hidden_states) if self.downsample is not None: hidden_states = self.downsample(hidden_states) return hidden_states class MidBlock(nn.Module): def __init__(self, config, in_channels: int, no_attn: False, dropout: float): super().__init__() self.config = config self.in_channels = in_channels self.no_attn = no_attn self.dropout = dropout self.block_1 = ResnetBlock( self.in_channels, self.in_channels, dropout_prob=self.dropout, ) if not no_attn: self.attn_1 = AttnBlock(self.in_channels) self.block_2 = ResnetBlock( self.in_channels, self.in_channels, dropout_prob=self.dropout, ) def forward(self, hidden_states): hidden_states = self.block_1(hidden_states) if not self.no_attn: hidden_states = self.attn_1(hidden_states) hidden_states = self.block_2(hidden_states) return hidden_states class Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # downsampling self.conv_in = nn.Conv2d( self.config.num_channels, self.config.hidden_channels, kernel_size=3, stride=1, padding=1, ) curr_res = self.config.resolution downsample_blocks = [] for i_level in range(self.config.num_resolutions): downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level)) if i_level != self.config.num_resolutions - 1: curr_res = curr_res // 2 self.down = nn.ModuleList(downsample_blocks) # middle mid_channels = self.config.hidden_channels * self.config.channel_mult[-1] self.mid = MidBlock(config, mid_channels, self.config.no_attn_mid_block, self.config.dropout) # end self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True) self.conv_out = nn.Conv2d( mid_channels, self.config.z_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, pixel_values): # downsampling hidden_states = self.conv_in(pixel_values) for block in self.down: hidden_states = block(hidden_states) # middle hidden_states = self.mid(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class Decoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # compute in_channel_mult, block_in and curr_res at lowest res block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1] curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1) self.z_shape = (1, self.config.z_channels, curr_res, curr_res) # z to block_in self.conv_in = nn.Conv2d( self.config.z_channels, block_in, kernel_size=3, stride=1, padding=1, ) # middle self.mid = MidBlock(config, block_in, self.config.no_attn_mid_block, self.config.dropout) # upsampling upsample_blocks = [] for i_level in reversed(range(self.config.num_resolutions)): upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level)) if i_level != 0: curr_res = curr_res * 2 self.up = nn.ModuleList(list(reversed(upsample_blocks))) # reverse to get consistent order # end block_out = self.config.hidden_channels * self.config.channel_mult[0] self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True) self.conv_out = nn.Conv2d( block_out, self.config.num_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, hidden_states): # z to block_in hidden_states = self.conv_in(hidden_states) # middle hidden_states = self.mid(hidden_states) # upsampling for block in reversed(self.up): hidden_states = block(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class VectorQuantizer(nn.Module): """ see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py Discretization bottleneck part of the VQ-VAE. """ def __init__(self, num_embeddings, embedding_dim, commitment_cost): r""" Args: num_embeddings: number of vectors in the quantized space. embedding_dim: dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta). """ super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.commitment_cost = commitment_cost self.embedding = nn.Embedding(num_embeddings, embedding_dim) self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings) def forward(self, hidden_states, return_loss=False): """ Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width) quantization pipeline: 1. get encoder input (B,C,H,W) 2. flatten input to (B*H*W,C) """ # reshape z -> (batch, height, width, channel) and flatten hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() distances = self.compute_distances(hidden_states) min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1) min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states) min_encodings.scatter_(1, min_encoding_indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape) # reshape to (batch, num_tokens) min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1) # compute loss for embedding loss = None if return_loss: loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean( (z_q - hidden_states.detach()) ** 2 ) # preserve gradients z_q = hidden_states + (z_q - hidden_states).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q, min_encoding_indices, loss def compute_distances(self, hidden_states): # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim)) emb_weights = self.embedding.weight.t() inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True) codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True) distances = torch.addmm( inputs_norm_sq + codebook_t_norm_sq, hidden_states_flattended, emb_weights, alpha=-2.0, ) return distances def get_codebook_entry(self, indices): # indices are expected to be of shape (batch, num_tokens) # get quantized latent vectors batch, num_tokens = indices.shape z_q = self.embedding(indices) z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2) return z_q # adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372 def get_soft_code(self, hidden_states, temp=1.0, stochastic=False): hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel) distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings) soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings) if stochastic: code = torch.multinomial(soft_code, 1) # (batch * height * width, 1) else: code = distances.argmin(dim=-1) # (batch * height * width) code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width) batch, num_tokens = code.shape soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings) return soft_code, code def get_code(self, hidden_states): # reshape z -> (batch, height, width, channel) hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() distances = self.compute_distances(hidden_states) indices = torch.argmin(distances, axis=1).unsqueeze(1) indices = indices.reshape(hidden_states.shape[0], -1) return indices class VQGANModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, resolution: int = 256, num_channels: int = 3, hidden_channels: int = 128, channel_mult: Tuple = (1, 1, 2, 2, 4), num_res_blocks: int = 2, attn_resolutions: int = (16,), no_attn_mid_block: bool = False, z_channels: int = 256, num_embeddings: int = 1024, quantized_embed_dim: int = 256, dropout: float = 0.0, resample_with_conv: bool = True, commitment_cost: float = 0.25, ): super().__init__() self.config.num_resolutions = len(channel_mult) self.config.reduction_factor = 2 ** (self.config.num_resolutions - 1) self.config.latent_size = resolution // self.config.reduction_factor self.encoder = Encoder(self.config) self.decoder = Decoder(self.config) self.quantize = VectorQuantizer( self.config.num_embeddings, self.config.quantized_embed_dim, self.config.commitment_cost ) self.quant_conv = nn.Conv2d( self.config.z_channels, self.config.quantized_embed_dim, kernel_size=1, ) self.post_quant_conv = nn.Conv2d( self.config.quantized_embed_dim, self.config.z_channels, kernel_size=1, ) def encode(self, pixel_values, return_loss=False): hidden_states = self.encoder(pixel_values) hidden_states = self.quant_conv(hidden_states) quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss) output = (quantized_states, codebook_indices) if return_loss: output = output + (codebook_loss,) return output def decode(self, quantized_states): hidden_states = self.post_quant_conv(quantized_states) reconstructed_pixel_values = self.decoder(hidden_states) return reconstructed_pixel_values def decode_code(self, codebook_indices): quantized_states = self.quantize.get_codebook_entry(codebook_indices) reconstructed_pixel_values = self.decode(quantized_states) return reconstructed_pixel_values def get_code(self, pixel_values): hidden_states = self.encoder(pixel_values) hidden_states = self.quant_conv(hidden_states) codebook_indices = self.quantize.get_code(hidden_states) return codebook_indices def forward(self, pixel_values, return_loss=False): hidden_states = self.encoder(pixel_values) hidden_states = self.quant_conv(hidden_states) quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss) reconstructed_pixel_values = self.decode(quantized_states) outputs = (reconstructed_pixel_values, quantized_states, codebook_indices) if return_loss: outputs = outputs + (codebook_loss,) return outputs def get_tokenizer_muse(): ckpts_path = "Emma02/vqvae_ckpts" net = VQGANModel.from_pretrained(ckpts_path) return net