""" Batch generation for sequnce of images. This script accept a jsonl file as input. Each line of the jsonl file representing a dictionary. Each line represents one example in the evaluation set. The dictionary should have two key: input: a list of paths to the input images as context to the model. output: a string representing the path to the output of generation to be saved. Ths script runs the mode to generate the output images, and concatenate the input and output images together and save them to the output path. """ import os import json from PIL import Image import numpy as np import mlxu from tqdm import tqdm, trange from multiprocessing import Pool import einops import torch from .inference import MultiProcessInferenceModel from .utils import read_image_to_tensor, MultiProcessImageSaver FLAGS, _ = mlxu.define_flags_with_default( input_file='', checkpoint='', input_base_dir='', output_base_dir='', evaluate_mse=False, json_input_key='input', json_output_key='output', json_target_key='target', n_new_frames=1, n_candidates=2, context_frames=16, temperature=1.0, top_p=1.0, n_workers=8, dtype='float16', torch_devices='', batch_size_factor=4, max_examples=0, resize_output='', include_input=False, ) # create this according to the json file. class MultiFrameDataset(torch.utils.data.Dataset): def __init__(self, input_files, output_files, target_files=None): assert len(input_files) self.input_files = input_files self.output_files = output_files self.target_files = target_files def __len__(self): return len(self.input_files) def __getitem__(self, idx): original_size = Image.open(self.input_files[idx][-1]).size input_images = np.stack( [read_image_to_tensor(f) for f in self.input_files[idx]], axis=0 ) if self.target_files is not None: target_images = np.stack( [read_image_to_tensor(f) for f in self.target_files[idx]], axis=0 ) else: target_images = None return input_images, target_images, self.output_files[idx], np.array(original_size) def main(_): assert FLAGS.checkpoint != '' print(f'Loading checkpoint from {FLAGS.checkpoint}') print(f'Evaluating input file from {FLAGS.input_file}') # build a model. model = MultiProcessInferenceModel( checkpoint=FLAGS.checkpoint, torch_devices=FLAGS.torch_devices, dtype=FLAGS.dtype, context_frames=FLAGS.context_frames, use_lock=True, ) # input_files: the json file that needs to be generated by the other file. input_files = [] output_files = [] if FLAGS.evaluate_mse: target_files = [] else: target_files = None with mlxu.open_file(FLAGS.input_file, 'r') as f: for line in f: record = json.loads(line) input_files.append(record[FLAGS.json_input_key]) output_files.append(record[FLAGS.json_output_key]) if FLAGS.evaluate_mse: target_files.append(record[FLAGS.json_target_key]) if FLAGS.max_examples > 0: input_files = input_files[:FLAGS.max_examples] output_files = output_files[:FLAGS.max_examples] if FLAGS.evaluate_mse: target_files = target_files[:FLAGS.max_examples] if FLAGS.input_base_dir != '': input_files = [ [os.path.join(FLAGS.input_base_dir, x) for x in y] for y in input_files ] if FLAGS.evaluate_mse: target_files = [ [os.path.join(FLAGS.input_base_dir, x) for x in y] for y in target_files ] if FLAGS.output_base_dir != '': os.makedirs(FLAGS.output_base_dir, exist_ok=True) output_files = [ os.path.join(FLAGS.output_base_dir, x) for x in output_files ] dataset = MultiFrameDataset(input_files, output_files, target_files) data_loader = torch.utils.data.DataLoader( dataset, batch_size=FLAGS.batch_size_factor * model.n_processes, shuffle=False, num_workers=FLAGS.n_workers, ) image_saver = MultiProcessImageSaver(FLAGS.n_workers) mses = [] for batch_images, batch_targets, batch_output_files, batch_sizes in tqdm(data_loader, ncols=0): # batch_images is input. batch_images = batch_images.numpy() # context_length = batch_images.shape[1] generated_images = model( batch_images, FLAGS.n_new_frames, FLAGS.n_candidates, temperature=FLAGS.temperature, top_p=FLAGS.top_p ) repeated_batch = einops.repeat( batch_images, 'b s h w c -> b n s h w c', n=FLAGS.n_candidates, ) generated_images = np.array(generated_images) if FLAGS.evaluate_mse: batch_targets = einops.repeat( batch_targets.numpy(), 'b s h w c -> b n s h w c', # batch, candidate, s n=FLAGS.n_candidates, ) channels = batch_targets.shape[-1] # calculate mse loss. mse = np.mean((generated_images - batch_targets) ** 2, axis=(1, 2, 3, 4, 5)) mses.append(mse * channels) if FLAGS.include_input: combined = einops.rearrange( np.concatenate([repeated_batch, generated_images], axis=2), 'b n s h w c -> b (n h) (s w) c' ) else: combined = einops.rearrange( generated_images, 'b n s h w c -> b (n h) (s w) c' ) combined = (combined * 255).astype(np.uint8) n_frames = FLAGS.n_new_frames if FLAGS.include_input: n_frames += context_length if FLAGS.resize_output == '': resizes = None elif FLAGS.resize_output == 'original': resizes = batch_sizes.numpy() resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]]) else: resize = tuple(int(x) for x in FLAGS.resize_output.split(',')) resizes = np.array([resize] * len(batch_sizes)) resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]]) image_saver(combined, batch_output_files, resizes) if FLAGS.evaluate_mse: mses = np.concatenate(mses, axis=0) print(f'MSE: {np.mean(mses)}') image_saver.close() if __name__ == "__main__": mlxu.run(main)