--- language: - en license: mit tags: - chemistry - SMILES - product datasets: - ORD metrics: - accuracy --- # ⚠️This is an old version of [ReactionT5v2-forward](https://huggingface.co/sagawa/ReactionT5v2-forward). Prediction accuracy is worse.⚠️ # Model Card for ReactionT5v1-forward This is a ReactionT5 pre-trained to predict the products of reactions. ### Model Sources - **Repository:** https://github.com/sagawatatsuya/ReactionT5 - **Paper:** https://arxiv.org/abs/2311.06708 ## Uses You can use this model for forward reaction prediction or fine-tune this model with your dataset. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5-product-prediction') inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt') model = T5ForConditionalGeneration.from_pretrained('sagawa/ReactionT5-product-prediction') output = model.generate(**inp, min_length=6, max_length=109, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].[Cr+3].[Cr+3]' ``` ## Training Details ### Training Procedure We used Open Reaction Database (ORD) dataset for model training. The command used for training is the following. For more information, please refer to the paper and GitHub repository. ```python python train.py \ --epochs=100 \ --batch_size=32 \ --data_path='../data/all_ord_reaction_uniq_with_attr_v3.csv' \ --use_reconstructed_data \ --pretrained_model_name_or_path='sagawa/CompoundT5' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO | USPTO | 80.3 | 84.7 | 86.2 | 87.5 | | WLDN | USPTO | USPTO | 80.6 (85.6) | 90.5 | 92.8 | 93.4 | | Molecular Transformer| USPTO | USPTO | 88.8 | 92.6 | – | 94.4 | | T5Chem | USPTO | USPTO | 90.4 | 94.2 | – | 96.4 | | CompoundT5 | USPTO | USPTO | 88.0 | 92.4 | 93.9 | 95.0 | | ReactionT5 | - | USPTO | 0.0 <85.0> | 0.0 <90.6> | 0.0 <92.3> | 0.0 <93.8> | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. The values enclosed in ‘<>’ in the table represent the scores of the model that was fine-tuned on 200 reactions from the USPTO dataset. The score enclosed in ‘()’ is the one reported in the original paper. ## Citation arxiv link: https://arxiv.org/abs/2311.06708 ``` @misc{sagawa2023reactiont5, title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data}, author={Tatsuya Sagawa and Ryosuke Kojima}, year={2023}, eprint={2311.06708}, archivePrefix={arXiv}, primaryClass={physics.chem-ph} } ```