test / train_dreambooth_rnpd_sdxl_lora.py
joachimsallstrom's picture
Upload 5 files
a0da56a
raw
history blame contribute delete
No virus
27.6 kB
import argparse
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import subprocess
import sys
import gc
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from transformers import AutoTokenizer, PretrainedConfig
import bitsandbytes as bnb
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from contextlib import nullcontext
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, CLIPTextModelWithProjection
from lora_sdxl import *
logger = get_logger(__name__)
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder=subfolder,
use_auth_token=True
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default="",
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--save_n_steps",
type=int,
default=1,
help=("Save the model every n global_steps"),
)
parser.add_argument(
"--save_starting_step",
type=int,
default=1,
help=("The step from which it starts saving intermediary checkpoints"),
)
parser.add_argument(
"--stop_text_encoder_training",
type=int,
default=1000000,
help=("The step at which the text_encoder is no longer trained"),
)
parser.add_argument(
"--image_captions_filename",
action="store_true",
help="Get captions from filename",
)
parser.add_argument(
"--Resumetr",
type=str,
default="False",
help="Resume training info",
)
parser.add_argument(
"--Session_dir",
type=str,
default="",
help="Current session directory",
)
parser.add_argument(
"--external_captions",
action="store_true",
default=False,
help="Use captions stored in a txt file",
)
parser.add_argument(
"--captions_dir",
type=str,
default="",
help="The folder where captions files are stored",
)
parser.add_argument(
"--offset_noise",
action="store_true",
default=False,
help="Offset Noise",
)
parser.add_argument(
"--ofstnselvl",
type=float,
default=0.03,
help="Offset Noise amount",
)
parser.add_argument(
"--resume",
action="store_true",
default=False,
help="resume training",
)
parser.add_argument(
"--dim",
type=int,
default=64,
help="LoRa dimension",
)
args = parser.parse_args()
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
args,
tokenizers,
text_encoders,
size=512,
center_crop=False,
instance_prompt_hidden_states=None,
instance_unet_added_conditions=None,
):
self.size = size
self.tokenizers=tokenizers
self.text_encoders=text_encoders
self.center_crop = center_crop
self.instance_prompt_hidden_states = instance_prompt_hidden_states
self.instance_unet_added_conditions = instance_unet_added_conditions
self.image_captions_filename = None
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self._length = self.num_instance_images
if args.image_captions_filename:
self.image_captions_filename = True
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index, args=parse_args()):
example = {}
path = self.instance_images_path[index % self.num_instance_images]
instance_image = Image.open(path)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
if self.image_captions_filename:
filename = Path(path).stem
pt=''.join([i for i in filename if not i.isdigit()])
pt=pt.replace("_"," ")
pt=pt.replace("(","")
pt=pt.replace(")","")
pt=pt.replace("-","")
pt=pt.replace("conceptimagedb","")
if args.external_captions:
cptpth=os.path.join(args.captions_dir, filename+'.txt')
if os.path.exists(cptpth):
with open(cptpth, "r") as f:
instance_prompt=f.read()
else:
instance_prompt=pt
else:
instance_prompt = pt
example["instance_images"] = self.image_transforms(instance_image)
with torch.no_grad():
example["instance_prompt_ids"], example["instance_added_cond_kwargs"]= compute_embeddings(args, instance_prompt, self.text_encoders, self.tokenizers)
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def encode_prompt(text_encoders, tokenizers, prompt):
prompt_embeds_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
with torch.no_grad():
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
add_text_embeds = [example["instance_added_cond_kwargs"]["text_embeds"] for example in examples]
add_time_ids = [example["instance_added_cond_kwargs"]["time_ids"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).half()
input_ids = torch.cat(input_ids, dim=0)
add_text_embeds = torch.cat(add_text_embeds, dim=0)
add_time_ids = torch.cat(add_time_ids, dim=0)
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
"unet_added_conditions": {"text_embeds": add_text_embeds, "time_ids": add_time_ids},
}
return batch
def compute_embeddings(args, prompt, text_encoders, tokenizers):
original_size = (args.resolution, args.resolution)
target_size = (args.resolution, args.resolution)
crops_coords_top_left = (0, 0)
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
add_text_embeds = pooled_prompt_embeds
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
prompt_embeds = prompt_embeds.to('cuda')
add_text_embeds = add_text_embeds.to('cuda')
add_time_ids = add_time_ids.to('cuda', dtype=prompt_embeds.dtype)
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
return prompt_embeds, unet_added_cond_kwargs
class LatentsDataset(Dataset):
def __init__(self, latents_cache, text_encoder_cache, cond_cache):
self.latents_cache = latents_cache
self.text_encoder_cache = text_encoder_cache
self.cond_cache = cond_cache
def __len__(self):
return len(self.latents_cache)
def __getitem__(self, index):
return self.latents_cache[index], self.text_encoder_cache[index], self.cond_cache[index]
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizers
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
use_fast=False,
use_auth_token=True,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
use_fast=False,
use_auth_token=True
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, subfolder="text_encoder"
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, subfolder="text_encoder_2"
)
# Load scheduler and models
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True,
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", use_auth_token=True
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True
)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.eval()
text_encoder_two.eval()
vae.eval()
model_path = os.path.join(args.Session_dir, os.path.basename(args.Session_dir) + ".safetensors")
network = create_network(1, args.dim, 20000, unet)
if args.resume:
network.load_weights(model_path)
def set_diffusers_xformers_flag(model, valid):
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
set_diffusers_xformers_flag(unet, True)
network.apply_to(unet, True)
trainable_params = network.parameters()
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(
trainable_params,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", use_auth_token=True)
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
tokenizers=tokenizers,
text_encoders=text_encoders,
size=args.resolution,
center_crop=args.center_crop,
args=args
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples),
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
network, optimizer, train_dataloader, lr_scheduler)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
network.prepare_grad_etc(network)
latents_cache = []
text_encoder_cache = []
cond_cache= []
for batch in train_dataloader:
with torch.no_grad():
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
batch["unet_added_conditions"] = batch["unet_added_conditions"]
batch["pixel_values"]=(vae.encode(batch["pixel_values"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample() * vae.config.scaling_factor)
latents_cache.append(batch["pixel_values"])
text_encoder_cache.append(batch["input_ids"])
cond_cache.append(batch["unet_added_conditions"])
train_dataset = LatentsDataset(latents_cache, text_encoder_cache, cond_cache)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True)
del vae, tokenizers, text_encoders
gc.collect()
torch.cuda.empty_cache()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
def bar(prg):
br='|'+'█' * prg + ' ' * (25-prg)+'|'
return br
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
network.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
with torch.no_grad():
model_input = batch[0][0]
# Sample noise that we'll add to the latents
if args.offset_noise:
noise = torch.randn_like(model_input)# + args.ofstnselvl * torch.randn(model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device)
else:
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device)
timesteps = timesteps.long()
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
model_pred = unet(noisy_model_input, timesteps, batch[0][1], added_cond_kwargs=batch[0][2]).sample
# Get the target for loss depending on the prediction type
target = noise
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
fll=round((global_step*100)/args.max_train_steps)
fll=round(fll/4)
pr=bar(fll)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
progress_bar.set_description_str("Progress")
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
network.save_weights(model_path, torch.float16, None)
accelerator.end_training()
if __name__ == "__main__":
main()