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Abstract—This paper proposes a method to prompted 
binary segmentation of 3D point clouds by leveraging a 
combination of advanced techniques, including Grounding 
DINO for 2D object detection, SAM for segmentation, and the 
state-of-the-art 3D scene representation method, 3D Gaussian 
splatting. Our method decouples the training of the 3D Gaussian 
model from the object segmentation process, enhancing the 
flexibility and efficiency. To facilitate the discrimination 
between target and non-target points, we augment each trained 
3D Gaussian with an additional attribute representing the 
likelihood of a point belonging to the target. By rendering the 
3D Gaussian model solely based on the new likelihood attribute, 
rather than the traditional color attribute, we generate a 
specialized possibility map. This map is then compared against 
the multi-view binary masks of target objects predicted by 
Grounding DINO and SAM. The proposed learning process 
yields comprehensive insights into the likelihood of each point 
belonging to the target objects. The results show that the 
proposed approach can achieve accurate segmentation of target 
object points with the trained attribute 𝒑 > 𝟎. 𝟗. 

Keywords—3D gaussian, grounding DINO, SAM, 3D 
segmentation 

I. INTRODUCTION  
In the intricate domain of 3D object detection and 

segmentation, accurate and efficient methodologies are 
pivotal, particularly in sectors like agriculture where they 
directly influence decision-making and resource optimization. 
Traditional methods, primarily centered around 2D imagery, 
have provided substantial groundwork but often fail to 
navigate the complexities of 3D environments. This is 
especially evident in applications such as fruit counting in 
agriculture, where accurate yield estimation is crucial for 

efficient yield forecasting and resource allocation. Recent 
technological advancements have attempted to bridge this gap, 
transitioning from 2D to 3D object detection to overcome the 
inherent limitations of 2D-based methodologies. However, 
while notable strides have been made, challenges persist, 
particularly when dealing with vast spatial expanses and the 
intricate details of numerous objects, such as fruits on a tree. 
This paper aims to address these challenges by introducing an 
approach that integrates state-of-the-art techniques from both 
2D object detection and 3D scene reconstruction. Our method 
harnesses the power of Grounding DINO for refined 2D object 
detection, SAM for meticulous segmentation, and 3D 
Gaussian splatting for advanced scene representation. Our 
proposed framework separates the training of the 3D Gaussian 
model from the segmentation process, which introduces a 
modular aspect to the workflow. Additionally, it assigns a 
probability value to each data point, allowing for more 
streamlined and adaptable processing pipelines. Moreover, the 
specialized focus on binary segmentation allows for a tailored 
approach in distinguishing between the object of interest and 
the background, thereby improving the system’s efficiency in 
scenarios where a clear demarcation is essential. 

 

II. BACKGROUND 

A. 2D-based object segmentation 
The realm of fruit counting has seen a proliferation of 2D 

image detection techniques, bolstered by deep learning 
advancements [3, 6, 9, 10, 18]. Methods like Faster R-CNN 
have been pivotal for such tasks. The state-of-the-art Segment 
Anything Model (SAM) [16] excels particularly in image 
segmentation for the ability to segment images effectively 
without task-specific training samples. While these 
approaches have showcased significant advancements in 
automating fruit counting processes, they inherently operate 
within the confines of two-dimensional visual data and 
encounter limitations, especially when scaling to the 3D 
complexities of extensive agricultural spaces. Recent 
advancements, such as the introduction of the YOLOv7 
framework, with its attention mechanism, has made strides in 
addressing some of these challenges by improving multi-
object detection in video sequences [7]. Nonetheless, for 
comprehensive and accurate counting across vast orchards, 
these methods need to evolve into the 3D domain, where they 

 
 

 
Fig. 1. Our segmentation method effectively utilizes Gaussian modeling 

to discern and delineate objects within a three-dimensional space. 
The image showcases the effective isolation of ornaments from the 
Christmas tree. 

 
 

 
 
 



can better manage the spatial dynamics of fruit positioning and 
density, a challenge not fully met by their 2D counterparts.  

 

B. 3D point cloud segmentation 
The techniques of Structure from Motion (SfM) [5] have 
advanced the field of 3D reconstruction by translating 
sequential 2D imagery into expansive three-dimensional 
point clouds, laying the foundation for the subsequent 
phases of object detection and segmentation.  The 
emergence of point cloud as a byproduct of these methods 
offers a depth of spatial information hitherto unavailable 
with traditional 2D approaches. Based on the generated 
point cloud, various methodologies such as [14] emerged 
for object detection within this point cloud. VoxNet [4] 
integrates a volumetric Occupancy Grid representation 
with 3D Convolutional Neural Network (3D CNN) for 
real-time object detection. However, the computational 
demands associated with 3D CNN are considerable. In 
response to the computational hurdles posed by VoxNet, 
subsequent advancements in object detection within point 
clouds have been introduced to refine the balance between 
computational efficiency and detection accuracy. Notably, 
[8] VoteNet have emerged as novel methodologies. Based 
on [11] PointNet and [12] PointNet++, VoteNet adapted 
Hough voting scheme for deep learning and 3D point 
clouds where each point in the input cloud votes for the 
potential center of an object to which it may belong. 
Independent from 3D voxel grids or multi-view images, it 
is particularly effective in scenarios where the objects are 
well-separated and not densely packed. While effective, 
the quality of the predictions heavily relies on the quality 
and density of the input point clouds. VoteNet struggle 
with objects with minimal presence in the point cloud, 
which is often the case with smaller fruits. This 
underscores the need for high quality point cloud data in 
applications leveraging VoteNet for accurate object 
detection, especially in the nuanced task of fruit counting 
where precision is important.  

C. Gaussian splatting-based segmentation 
The paper by [15] introduces Neural Radiance Fields 

(NeRF) as a novel representation technique for scenes, 
enabling continuous evaluation at any point in space from 
sparse point cloud inputs. While training and rendering with 
NeRF can be computationally intensive, it paved the way for 
the development of 3D Gaussian splatting [13]. This 
innovative method stands out for its ability to achieve rapid 
and high-quality 3D scene reconstruction.  

Expanding upon this foundation, [2] Gaussian grouping 
and [1] Segment any 3D Gaussians (SAGA) has leveraged [16] 
Segment Anything (SAM) generated masks for object 
segmentation, integrating advanced detection and 
segmentation methods with Gaussian splatting. In the case of 
Gaussian grouping, a key feature is it’s requirement for 
consistent identity across multiple views  mask inputs. To 
address this challenge, a zero-shot tracker is employed within 
video sequence of multi-view images, which enhances the 
capacity of the system to track multiple objects effectively 
during camera movement. However, in specific applications 
like fruit counting on trees, the Gaussian grouping approach 
encounters practical limitations. The sheer number of fruits in 
orchards makes tracking each individual fruit not only 
computationally demanding but also costly in terms of 
resources. Furthermore, Gaussian grouping intertwines the 
segmentation process with 3D gaussian model training, 
potentially hampers its flexibility. This integration can lead to 
constrains when adapting the methodology to varied and 
complex scenarios, such as the diverse and unpredictable 
environments typically found in agricultural settings. While 
SAGA distinct in its delineation of segmentation and 3D 
gaussian model training, it falls short in its ability to identify 
all target objects through prompts. Addressing these 
limitations to fit for fruits detection and segmentation, this 
paper proposes a method that synthesizing the strengths of 
both SAGA and Gaussian grouping.  

This approach capitalizes on the segmentation capabilities 
in three-dimensional space, integrating advanced techniques 
from 2D object detection and segmentation. Specifically, it 

 
Fig. 2. The flowchart of the segmentation process using a 3D Gaussian Splatting (3DGS) model enhanced with an added attribute 𝒑 for probability. The 

process begins with a pre-trained 3DGS to which the attribute 𝒑 is added. This modified 3DGS is then used to project the attribute 𝒑 throught the 
camera’s perspective, creating a probability map via a differentiable tile rasterizer. The probability map is compared with the mask to calculate the 
loss. 

 



employs [17] Grounding DINO and SAM, coupled with 3D 
scene reconstruction through Gaussian splatting. This 
integration allows for a more nuanced and detailed analysis of 
the scenes, facilitating the identification and segmentation of 
target objects, such as fruits, in complex environments.  

The proposed method marks an improvement in the field 
of fruit detection and segmentation, particularly in challenging 
environments like orchards where the density and distribution 
of fruits can vary greatly. Despite the challenges inherent in 
navigating the intricacies of detection and segmentation 
within the volumetric space of point clouds, this paper seeks 
to overcome these obstacles. The primary objective is to 
establish a robust framework capable of not only identifying 
the presence of objects but also precisely delineating and 
segmenting them within the rich, three-dimensional context of 
point cloud information. By integrating and building upon 
existing techniques, this approach aims to offer a more 
flexible, efficient, and accurate solution to the challenges of 
fruit counting and yield estimation in agriculture. Through this 
advancement, the research seeks to contribute to the broader 
goal of precision agriculture, where such technological 
innovations can lead to more informed decision-making and 
resource optimization.  

III. METHOD 
The method is implemented in Python using the Pytorch 

framework combined with C++ and custom CUDA kernels 
for rasterization part.  

A. 3D Gaussian splatting pretrained model 
The methodology outlined for 3D object segmentation 

in this paper adopts a multi-faceted approach (refer to 

Figure 2) that begins with the generation of a 3D point 
cloud from multi-view images. This process is facilitated 
using COLMAP. Once the point cloud is generated, it 
serves as the foundational dataset for training the 
Gaussian splatting model.  
 

A key innovation in this approach is the modification 
of the Gaussian model file to include an additional 
attribute, termed ‘𝑝’, for each point in the point cloud. 
This ‘𝑝’ attribute is designed to represent the probability 
of each point belonging to the target object, reformulating 
the 3D object segmentation challenge into a binary 
classification problem. 

 
The methodology entails two main components: 
1. Prediction Phase: The predicted value is derived 

from the image rasterized by the 3D gaussian 
model from the perspective of the camera. This 
process involves mapping the 3D points back to a 
2D plane from the viewpoint of the camera, thus 
providing a predicted probability map.  

2. Grounded Truth Alignment: The ground truth 
value is obtained from the corresponding mask 
image, which precisely delineates the target object 
within the scene.  

 
The crux of the method lies in minimizing the discrepancy 

between these predicted values and the ground truth. By 
reducing this difference, each point’s probability of 
belonging to the target object is effectively ascertained. To 

 

          
                   𝒑 ≥ 0                                   𝒑 > 0.5                                     𝒑 > 0.6                                    𝒑 > 0.7 
 

            
                   𝒑 > 0.73                              𝒑 > 0.75                                     𝒑 > 0.8                                    𝒑 > 0.9 
Fig. 3. Visualization and segmentation of a trained point cloud using open3d with varying probability thresholds. In this visualization, the trained point 

cloud is rendered in open3d, with points selectively filtered based on the attribute 𝒑. As depicted in the sequence, it becomes apparent that 
thresholds exceeding 0.75 yield a distinctly clear and precise separation of the target object from the surrounding environment. 

 



achieve this, the technique employs Binary Cross-Entropy, a 
standard loss function in binary classification tasks. This  

function quantifies the difference between the predicted 
probabilities and the actual binary labels (whether the pixel is 
projected by the target object or not). 

 

B. Grounded Segment Anything mask input 
The proposed methodology in this research utilizes 

Grounded-SAM, an approach that combines stable diffusion 
with Grounding DINO and SAM for enhanced object 
detection and segmentation. Once the target objects are 
accurately detected and their boundaries established, the 
Segment Anything (SAM) is used to meticulously draw 
segmentation masks over the identified objects within their 
respective bounding boxes. The next step involves the use of 
the crafted mask images to train the Gaussian model. Each 
point is assigned an additional attribute – the likelihood of its 
belonging to the target object. This additional attribute is the 
key of the model’s ability to distinguish between the target 
objects and the surrounding environment.  

 

C. Binary segmentation 
In this methodology, the objective is to distinguish 

between points that belong to the target objects and those that 
are part of the surrounding environment in a 3D point cloud. 
To achieve this, we introduced an extra attribute ‘𝑝’ for each 
point, representing the probability that the point is part of the 
target object. This attribute complements existing point 
attributes such as position, scaling, rotation, color, and 
opacity.  

• Gaussian Splatting Rendering: 

 In the Gaussian splatting rendering process, the color of 
each pixel is computed as a weighted sum of the colors of all 
points	 𝑁  overlapping that pixel ordered by depth. This 
calculation is based on the transparency (𝛼) of each point: 

 C  = ∑ 𝑐!𝛼!∏ 31 − 𝛼"6!#$
"%$!∈'  (1) 

 Where C is the color rendered at a pixel, 𝑐! is the color of 
point 𝑖, and 𝛼! is the transparency of point 𝑖. 

• Rasterization of Probability Map: 

 By integrating the probability attribute 𝑝 (representing the 
likelihood of a point belonging to the target object), a similar 
approach is used to create a probability map: 

 G  = ∑ 𝑝!𝛼!∏ 31 − 𝛼"6!#$
"%$!∈'  (2) 

 Here, G  represents the rasterized probability map, and 𝑝! 
is the probability that point 𝑖 belongs to the target object. The 
resulting image is a grayscale map where the brightness of 
each pixel indicates the probability of the presence of the 
target object (with black background).  

• Loss calculation. 

The loss L is computed using Binary Cross-Entropy 
between the rasterized probability map and the ground truth 
masks. Binary Cross-Entropy is a suitable choice here as it 
measures the distance between two probability distributions – 
the predicted probabilities and the actual binary labels (0 or 1) 
in the ground truth masks. 

To ensure the stability of the learning process and maintain 
the probabilities within a valid range, the values of 𝑝  are 
clamped to remain between 0 and 1 after each iteration. This 
clamping is crucial to prevent probabilities from reaching non-
physical values (less than 0 or greater than 1).  

By employing this approach, our methodology effectively 
turns the problem of 3D object segmentation into a 
manageable binary classification task. The use of a probability 
map as an output of the Gaussian splatting process, coupled 
with a well-suited loss function, enables a nuanced and precise 
segmentation of target objects from the surrounding 
environment in the 3D point cloud. 

 

IV. RESULTS 

A. Experiment on an indoor static object – a Christmas tree 
In this study, we utilized a pre-constructed Gaussian 

model of a Christmas tree, encompassing 79 camera 
viewpoints and adorned with 10 blue spherical ornaments, to 
evaluate our segmentation model. A new attribute, denoted as 
𝑝, was integrated into the pre-existing 3D Gaussian model, 
which represents the probability of each point belonging to the 
target object (in this case, the ornaments). The rasterization 
methodology employed is akin to standard Gaussian splatting 
[13], with the key distinction being the projection of attribute 
𝑝’s value instead of the conventional RGB values, resulting in 
the generation of a grayscale probability map as shown in 
figure 4.  

Optimization of the model was carried out using the Adam 
optimizer, set at a learning rate of 0.0005. Through a series of 
experimental iterations, it was observed that a total of 7000 
iterations were sufficient for the loss value to plateau, 
indicating optimal modal training. This observation was 
consistent across models trained for different iteration counts 
– specifically, models pre-trained for both 7000 iterations 
(yielding 1,418,600 points) and 30,000 iterations (resulting in 
2,112,900 points). The dataset, featuring the Christmas tree, 
was trained using an RTX2080 GPU. The duration of training 

Identify applicable funding agency here. If none, delete this text box. 

TABLE I.  CHRISTMAS TREE DATASET TRAINING DETAILS 

Model 
Training details mBIoU (%) 

iteration Total points Time lapsed 0.7 0.75 0.8 0.9 
Christmas tree 3000 1,418,600 22m28s 52.7 17.4 1.1 0 
Christmas tree 7000 1,418,600 57m03s 65.0 53.2 37.7 2.28 
Christmas tree 10000 1,418,600 79m24s 66.3 57.9 46.6 15.2 
Christmas tree 12000 2,112,900 127m28s 67.3 60.2 50.6 20.0 

 



corresponding to different iteration counts is detailed in Table 
I. 

In analyzing the results (refer to Figure 3), a threshold was 
applied to the probability values (𝑝). It was observed that 
when 𝑝 > 0.75, the model proficiently delineated the target 
objects (ornaments) from the background, yielding a clear and 
accurate segmentation. For the purpose of evaluation, the 
mean Binary Intersection over Union (mBIoU) metric was 
employed. Given the grayscale nature of the predicted images 
(as illustrated in Fiture 4), a specific threshold was set to 
binarize these images for the mBIoU calculation, as this 
metirc necessitates both the predicted and ground truth masks 
to be in binary format. The mBIoU scores, corresponding to 
varying threshold levels, are presented in Table I. 

The experimentation underscores the efficacy of our 
proposed method in accurately segmenting target objects form 
complex backgrounds in 3D environments, demonstrating 
promising potential for broader applications in various fields.  

B. Experimental Evaluation on the LERF-Mask dataset 
 To compare out model with other models, we tested our 
model with LERF-Mask dataset [2] and the result is shown in 
Table II. 

TABLE II.  COMPARING BETWEEN DIFFERENT MODELS 

 

V. LIMITATION 
 The effectiveness of our segmentation approach is 
intrinsically linked to the precision of 2D object detection 
masks. As such, the quality of segmentation is heavily 
dependent on the accuracy of these 2D segmentation 
outcomes. However, this dependency is somewhat mitigated 
when multiple viewpoints are utilized, each providing 
different detection results for a single object. In scenarios 

Model Figurines mBIoU (%) 

LERF 30.6 

Gaussian Grouping 67.9 

Ours (only with promts: 
green apple) 

0.7 0.75 0.8 0.9 

56.8 41.6 16.2 0 

                     
           Original scene image                            3000 iteration - probability map             7000 iteration - probability map 
 

                                               
 Grounded-SAM generated masks             10000 iteration - probability map              12000 iteration - probability map 

 
Fig. 4. Probability map rendered during model evaluation. As the iteration count increases, the trained model renders a probability map where the 

distinction between the object and the background becomes progressively more pronounced. 

 
 
 



where varying perspectives are available, the impact of any 
discrepancies in 2D detection accuracy is reduced, leading to 
a more robust and reliable segmentation performance. 

 

VI. CONCLUSION 
 

In conclusion, the method presented in this paper provides 
a robust and versatile framework for prompted binary 
segmentation of 3D point clouds, effectively bridging the 
divide between 2D object detection and 3D scene 
representation. The results showcased in this study highlight 
the system’s ability to enhance segmentation accuracy while 
maintaining a balance between computational efficiency and 
detailed scene reconstruction. This approach significantly 
contributes to the ongoing advancement in the field of 3D 
object detection and segmentation.  

Looking ahead, future research endeavors will focus on 
integrating VoteNet for the identification of object centroids 
within 3D point clouds. This addition aims to facilitate 
accurate object counting, further expanding the applicability 
of our methodology in various practical scenarios. By 
leveraging VoteNet's capabilities, we anticipate 
improvements in both the precision of object localization and 
the efficiency of object enumeration, thereby addressing some 
of the current limitations and opening new avenues in 3D 
spatial analysis. 
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