mevol's picture
adding all relevant files for independent validation set
096c2f7
raw
history blame
No virus
150 kB
Structural B-experimental_method
characterization I-experimental_method
of O
encapsulated B-protein_state
ferritin B-protein_type
provides O
insight O
into O
iron B-chemical
storage O
in O
bacterial B-taxonomy_domain
nanocompartments B-complex_assembly
Ferritins B-protein_type
are O
ubiquitous O
proteins O
that O
oxidise O
and O
store O
iron B-chemical
within O
a O
protein O
shell B-structure_element
to O
protect O
cells O
from O
oxidative O
damage O
. O
We O
have O
characterized O
the O
structure B-evidence
and O
function O
of O
a O
new O
member O
of O
the O
ferritin B-protein_type
superfamily O
that O
is O
sequestered O
within O
an O
encapsulin B-protein
capsid O
. O
We O
show O
that O
this O
encapsulated B-protein_state
ferritin B-protein_type
( O
EncFtn B-protein
) O
has O
two O
main B-structure_element
alpha I-structure_element
helices I-structure_element
, O
which O
assemble O
in O
a O
metal B-protein_state
dependent I-protein_state
manner O
to O
form O
a O
ferroxidase B-site
center I-site
at O
a O
dimer B-site
interface I-site
. O
EncFtn B-protein
adopts O
an O
open B-protein_state
decameric B-oligomeric_state
structure B-evidence
that O
is O
topologically O
distinct O
from O
other O
ferritins B-protein_type
. O
While O
EncFtn B-protein
acts O
as O
a O
ferroxidase B-protein_type
, O
it O
cannot O
mineralize O
iron B-chemical
. O
Conversely O
, O
the O
encapsulin B-protein
shell B-structure_element
associates O
with O
iron B-chemical
, O
but O
is O
not B-protein_state
enzymatically I-protein_state
active I-protein_state
, O
and O
we O
demonstrate O
that O
EncFtn B-protein
must O
be O
housed O
within O
the O
encapsulin B-protein
for O
iron B-chemical
storage O
. O
This O
encapsulin B-protein
nanocompartment B-complex_assembly
is O
widely O
distributed O
in O
bacteria B-taxonomy_domain
and O
archaea B-taxonomy_domain
and O
represents O
a O
distinct O
class O
of O
iron B-chemical
storage O
system O
, O
where O
the O
oxidation O
and O
mineralization O
of O
iron B-chemical
are O
distributed O
between O
two O
proteins O
. O
Iron B-chemical
is O
essential O
for O
life O
as O
it O
is O
a O
key O
component O
of O
many O
different O
enzymes O
that O
participate O
in O
processes O
such O
as O
energy O
production O
and O
metabolism O
. O
However O
, O
iron B-chemical
can O
also O
be O
highly O
toxic O
to O
cells O
because O
it O
readily O
reacts O
with O
oxygen B-chemical
. O
To O
balance O
the O
cell O
O
s O
need O
for O
iron B-chemical
against O
its O
potential O
damaging O
effects O
, O
organisms O
have O
evolved O
iron B-protein_type
storage I-protein_type
proteins I-protein_type
known O
as O
ferritins B-protein_type
that O
form O
cage B-structure_element
- I-structure_element
like I-structure_element
structures I-structure_element
. O
The O
ferritins B-protein_type
convert O
iron B-chemical
into O
a O
less O
reactive O
form O
that O
is O
mineralised O
and O
safely O
stored O
in O
the O
central B-site
cavity I-site
of O
the O
ferritin B-protein_type
cage O
and O
is O
available O
for O
cells O
when O
they O
need O
it O
. O
Recently O
, O
a O
new O
family O
of O
ferritins B-protein_type
known O
as O
encapsulated B-protein_state
ferritins B-protein_type
have O
been O
found O
in O
some O
microorganisms B-taxonomy_domain
. O
These O
ferritins B-protein_type
are O
found O
in O
bacterial B-taxonomy_domain
genomes O
with O
a O
gene O
that O
codes O
for O
a O
protein O
cage O
called O
an O
encapsulin B-protein
. O
Although O
the O
structure B-evidence
of O
the O
encapsulin B-protein
cage O
is O
known O
to O
look O
like O
the O
shell B-structure_element
of O
a O
virus B-taxonomy_domain
, O
the O
structure B-evidence
that O
the O
encapsulated B-protein_state
ferritin B-protein_type
itself O
forms O
is O
not O
known O
. O
It O
is O
also O
not O
clear O
how O
encapsulin B-protein
and O
the O
encapsulated B-protein_state
ferritin B-protein_type
work O
together O
to O
store O
iron B-chemical
. O
He O
et O
al O
. O
have O
now O
used O
the O
techniques O
of O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
and O
mass B-experimental_method
spectrometry I-experimental_method
to O
determine O
the O
structure B-evidence
of O
the O
encapsulated B-protein_state
ferritin B-protein_type
found O
in O
some O
bacteria B-taxonomy_domain
. O
The O
encapsulated B-protein_state
ferritin B-protein_type
forms O
a O
ring B-structure_element
- I-structure_element
shaped I-structure_element
doughnut B-structure_element
in O
which O
ten O
subunits B-structure_element
of O
ferritin B-protein_type
are O
arranged O
in O
a O
ring B-structure_element
; O
this O
is O
totally O
different O
from O
the O
enclosed O
cages B-structure_element
that O
other O
ferritins B-protein_type
form O
. O
Biochemical B-experimental_method
studies I-experimental_method
revealed O
that O
the O
encapsulated B-protein_state
ferritin B-protein_type
is O
able O
to O
convert O
iron B-chemical
into O
a O
less O
reactive O
form O
, O
but O
it O
cannot O
store O
iron B-chemical
on O
its O
own O
since O
it O
does O
not O
form O
a O
cage O
. O
Thus O
, O
the O
encapsulated B-protein_state
ferritin B-protein_type
needs O
to O
be O
housed O
within O
the O
encapsulin B-protein
cage O
to O
store O
iron B-chemical
. O
Further O
work O
is O
needed O
to O
investigate O
how O
iron B-chemical
moves O
into O
the O
encapsulin B-protein
cage O
to O
reach O
the O
ferritin B-protein_type
proteins O
. O
Some O
organisms O
have O
both O
standard O
ferritin B-protein_type
cages O
and O
encapsulated B-protein_state
ferritins B-protein_type
; O
why O
this O
is O
the O
case O
also O
remains O
to O
be O
discovered O
. O
Encapsulin B-protein_type
nanocompartments B-complex_assembly
are O
a O
family O
of O
proteinaceous O
metabolic O
compartments O
that O
are O
widely O
distributed O
in O
bacteria B-taxonomy_domain
and O
archaea B-taxonomy_domain
. O
They O
share O
a O
common O
architecture O
, O
comprising O
an O
icosahedral B-protein_state
shell B-structure_element
formed O
by O
the O
oligomeric O
assembly O
of O
a O
protein O
, O
encapsulin B-protein_type
, O
that O
is O
structurally O
related O
to O
the O
HK97 B-taxonomy_domain
bacteriophage I-taxonomy_domain
capsid O
protein O
gp5 B-protein
. O
Gp5 B-protein
is O
known O
to O
assemble O
as O
a O
66 O
nm O
diameter O
icosahedral B-protein_state
shell B-structure_element
of O
420 O
subunits B-structure_element
. O
In O
contrast O
, O
both O
the O
Pyrococcus B-species
furiosus I-species
and O
Myxococcus B-species
xanthus I-species
encapsulin B-protein
shell B-structure_element
- O
proteins O
form O
32 O
nm O
icosahedra B-structure_element
with O
180 O
subunits B-structure_element
; O
while O
the O
Thermotoga B-species
maritima I-species
encapsulin B-protein
is O
smaller O
still O
with O
a O
25 O
nm O
, O
60 O
- O
subunit O
icosahedron B-structure_element
. O
The O
high O
structural O
similarity O
of O
the O
encapsulin B-protein_type
shell B-structure_element
- O
proteins O
to O
gp5 B-protein
suggests O
a O
common O
evolutionary O
origin O
for O
these O
proteins O
. O
The O
genes O
encoding O
encapsulin B-protein_type
proteins O
are O
found O
downstream O
of O
genes O
for O
dye B-protein_type
- I-protein_type
dependent I-protein_type
peroxidase I-protein_type
( O
DyP B-protein_type
) O
family O
enzymes O
, O
or O
encapsulin B-protein_type
- I-protein_type
associated I-protein_type
ferritins I-protein_type
( O
EncFtn B-protein_type
). O
Enzymes O
in O
the O
DyP B-protein_type
family I-protein_type
are O
active O
against O
polyphenolic O
compounds O
such O
as O
azo O
dyes O
and O
lignin O
breakdown O
products O
; O
although O
their O
physiological O
function O
and O
natural O
substrates O
are O
not O
known O
. O
Ferritin B-protein_type
family O
proteins O
are O
found O
in O
all O
kingdoms B-taxonomy_domain
and O
have O
a O
wide O
range O
of O
activities O
, O
including O
ribonucleotide B-protein_type
reductase I-protein_type
, O
protecting O
DNA O
from O
oxidative O
damage O
, O
and O
iron B-chemical
storage O
. O
The O
classical B-protein_state
iron B-complex_assembly
storage I-complex_assembly
ferritin I-complex_assembly
nanocages I-complex_assembly
are O
found O
in O
all O
kingdoms B-taxonomy_domain
and O
are O
essential O
in O
eukaryotes B-taxonomy_domain
; O
they O
play O
a O
central O
role O
in O
iron B-chemical
homeostasis O
, O
where O
they O
protect O
the O
cell O
from O
toxic O
free O
Fe2 B-chemical
+ I-chemical
by O
oxidizing O
it O
and O
storing O
the O
resulting O
Fe3 B-chemical
+ I-chemical
as O
ferrihydrite B-chemical
minerals O
within O
their O
central B-site
cavity I-site
. O
The O
encapsulin B-protein_type
- O
associated O
enzymes O
are O
sequestered O
within O
the O
icosahedral B-protein_state
shell B-structure_element
through O
interactions O
between O
the O
shell B-structure_element
O
s O
inner O
surface O
and O
a O
short B-structure_element
localization I-structure_element
sequence I-structure_element
( O
Gly B-structure_element
- I-structure_element
Ser I-structure_element
- I-structure_element
Leu I-structure_element
- I-structure_element
Lys I-structure_element
) O
appended O
to O
their O
C O
- O
termini O
. O
This B-structure_element
motif I-structure_element
is O
well B-protein_state
- I-protein_state
conserved I-protein_state
, O
and O
the O
addition O
of O
this O
sequence O
to O
heterologous O
proteins O
is O
sufficient O
to O
direct O
them O
to O
the O
interior O
of O
encapsulins B-protein_type
. O
A O
recent O
study O
of O
the O
Myxococcus B-species
xanthus I-species
encapsulin B-protein
showed O
that O
it O
sequesters O
a O
number O
of O
different O
EncFtn B-protein_type
proteins O
and O
acts O
as O
an O
O
iron B-chemical
- O
megastore O
O
to O
protect O
these O
bacteria B-taxonomy_domain
from O
oxidative O
stress O
. O
At O
32 O
nm O
in O
diameter O
, O
it O
is O
much O
larger O
than O
other O
members O
of O
the O
ferritin B-protein_type
superfamily O
, O
such O
as O
the O
12 O
nm O
24 O
- O
subunit O
classical B-protein_state
ferritin B-protein_type
nanocage B-complex_assembly
and O
the O
8 O
nm O
12 O
- O
subunit O
Dps B-protein_type
( O
DNA B-protein_type
- I-protein_type
binding I-protein_type
protein I-protein_type
from O
starved O
cells O
) O
complex O
; O
and O
is O
thus O
capable O
of O
sequestering O
up O
to O
ten O
times O
more O
iron B-chemical
than O
these O
ferritins B-protein_type
. O
The O
primary O
sequences O
of O
EncFtn B-protein_type
proteins O
have O
Glu B-structure_element
- I-structure_element
X I-structure_element
- I-structure_element
X I-structure_element
- I-structure_element
His I-structure_element
metal B-site
coordination I-site
sites I-site
, O
which O
are O
shared O
features O
of O
the O
ferritin B-protein_type
family O
proteins O
. O
Secondary B-experimental_method
structure I-experimental_method
prediction I-experimental_method
identifies O
two O
major B-structure_element
α I-structure_element
- I-structure_element
helical I-structure_element
regions I-structure_element
in O
these O
proteins O
; O
this O
is O
in O
contrast O
to O
other O
members O
of O
the O
ferritin B-protein_type
superfamily O
, O
which O
have O
four O
major B-structure_element
α I-structure_element
- I-structure_element
helices I-structure_element
( O
Supplementary O
file O
1 O
). O
The O
O
half O
- O
ferritin B-protein_type
O
primary O
sequence O
of O
the O
EncFtn B-protein_type
family O
and O
their O
association O
with O
encapsulin B-protein
nanocompartments B-complex_assembly
suggests O
a O
distinct O
biochemical O
and O
structural O
organization O
to O
other O
ferritin B-protein_type
family O
proteins O
. O
The O
Rhodospirillum B-species
rubrum I-species
EncFtn B-protein
protein O
( O
Rru_A0973 B-gene
) O
shares O
33 O
% O
protein O
sequence O
identity O
with O
the O
M B-species
. I-species
xanthus I-species
( O
MXAN_4464 B-gene
), O
53 O
% O
with O
the O
T B-species
. I-species
maritima I-species
( O
Tmari_0787 B-gene
), O
and O
29 O
% O
with O
the O
P B-species
. I-species
furiosus I-species
( O
PF1192 B-gene
) O
homologues O
. O
The O
GXXH B-structure_element
motifs O
are O
strictly B-protein_state
conserved I-protein_state
in O
each O
of O
these O
species O
( O
Supplementary O
file O
1 O
). O
Here O
we O
investigate O
the O
structure B-evidence
and O
biochemistry O
of O
EncFtn B-protein
in O
order O
to O
understand O
iron B-chemical
storage O
within O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
. O
We O
have O
produced O
recombinant O
encapsulin B-protein
( O
Enc B-protein
) O
and O
EncFtn B-protein
from O
the O
aquatic B-taxonomy_domain
purple B-taxonomy_domain
- I-taxonomy_domain
sulfur I-taxonomy_domain
bacterium I-taxonomy_domain
R B-species
. I-species
rubrum I-species
, O
which O
serves O
as O
a O
model O
organism O
for O
the O
study O
of O
the O
control O
of O
the O
bacterial B-taxonomy_domain
nitrogen O
fixation O
machinery O
, O
in O
Escherichia B-species
coli I-species
. O
Analysis O
by O
transmission B-experimental_method
electron I-experimental_method
microscopy I-experimental_method
( O
TEM B-experimental_method
) O
indicates O
that O
their O
co B-experimental_method
- I-experimental_method
expression I-experimental_method
leads O
to O
the O
production O
of O
an O
icosahedral B-protein_state
nanocompartment B-complex_assembly
with O
encapsulated B-protein_state
EncFtn B-protein
. O
The O
crystal B-evidence
structure I-evidence
of O
a O
truncated B-protein_state
hexahistidine B-protein_state
- I-protein_state
tagged I-protein_state
variant O
of O
the O
EncFtn B-protein
protein O
( O
EncFtnsH B-protein
) O
shows O
that O
it O
forms O
a O
decameric B-oligomeric_state
structure B-evidence
with O
an O
annular O
O
ring B-structure_element
- I-structure_element
doughnut I-structure_element
O
topology O
, O
which O
is O
distinct O
from O
the O
four B-structure_element
- I-structure_element
helical I-structure_element
bundles I-structure_element
of O
the O
24meric B-oligomeric_state
ferritins B-protein_type
and O
dodecahedral B-oligomeric_state
DPS B-protein_type
proteins O
. O
We O
identify O
a O
symmetrical O
iron B-protein_state
bound I-protein_state
ferroxidase B-site
center I-site
( O
FOC B-site
) O
formed O
between O
subunits B-structure_element
in O
the O
decamer B-oligomeric_state
and O
additional O
metal B-site
- I-site
binding I-site
sites I-site
close O
to O
the O
center O
of O
the O
ring B-structure_element
and O
on O
the O
outer O
surface O
. O
We O
also O
demonstrate O
the O
metal O
- O
dependent O
assembly O
of O
EncFtn B-protein
decamers B-oligomeric_state
using O
native B-experimental_method
PAGE I-experimental_method
, O
analytical B-experimental_method
gel I-experimental_method
- I-experimental_method
filtration I-experimental_method
, O
and O
native B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
. O
Biochemical B-experimental_method
assays I-experimental_method
show O
that O
EncFtn B-protein
is O
active B-protein_state
as O
a O
ferroxidase B-protein_type
enzyme O
. O
Through O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
we O
show O
that O
the O
conserved B-protein_state
glutamic B-residue_name
acid I-residue_name
and O
histidine B-residue_name
residues O
in O
the O
FOC B-site
influence O
protein O
assembly O
and O
activity O
. O
We O
use O
our O
combined O
structural B-evidence
and I-evidence
biochemical I-evidence
data I-evidence
to O
propose O
a O
model O
for O
the O
EncFtn B-protein
- O
catalyzed O
sequestration O
of O
iron B-chemical
within O
the O
encapsulin B-protein
shell B-structure_element
. O
Assembly O
of O
R B-species
. I-species
rubrum I-species
EncFtn B-protein
encapsulin B-protein
nanocompartments B-complex_assembly
in O
E B-species
. I-species
coli I-species
Full B-evidence
- I-evidence
frame I-evidence
transmission I-evidence
electron I-evidence
micrographs I-evidence
of O
R B-species
. I-species
rubrum I-species
nanocompartments B-complex_assembly
. O
( O
A O
/ O
B O
) O
Negative B-experimental_method
stain I-experimental_method
TEM I-experimental_method
image B-evidence
of O
recombinant O
R B-species
. I-species
rubrum I-species
encapsulin B-protein
and O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartments B-complex_assembly
. O
All O
samples O
were O
imaged O
at O
143 O
, O
000 O
x O
magnification O
; O
the O
scale O
bar O
length O
corresponds O
to O
50 O
nm O
. O
( O
C O
) O
Histogram B-evidence
showing O
the O
distribution O
of O
nanocompartment B-complex_assembly
diameters O
. O
A O
model O
Gaussian B-experimental_method
nonlinear I-experimental_method
least I-experimental_method
square I-experimental_method
function I-experimental_method
was O
fitted O
to O
the O
data O
to O
obtain O
a O
mean O
diameter O
of O
24 O
. O
6 O
nm O
with O
a O
standard O
deviation O
of O
2 O
. O
0 O
nm O
for O
encapsulin B-protein
( O
grey O
) O
and O
a O
mean O
value O
of O
23 O
. O
9 O
nm O
with O
a O
standard O
deviation O
of O
2 O
. O
2 O
nm O
for O
co B-experimental_method
- I-experimental_method
expressed I-experimental_method
EncFtn B-protein
and O
encapsulin B-protein
( O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
, O
black O
). O
Purification O
of O
recombinant O
R B-species
. I-species
rubrum I-species
encapsulin B-protein
nanocompartments B-complex_assembly
. O
( O
A O
) O
Recombinantly B-experimental_method
expressed I-experimental_method
encapsulin B-protein
( O
Enc B-protein
) O
and O
co B-experimental_method
- I-experimental_method
expressed I-experimental_method
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
were O
purified O
by O
sucrose B-experimental_method
gradient I-experimental_method
ultracentrifugation I-experimental_method
from O
E B-species
. I-species
coli I-species
B834 O
( O
DE3 O
) O
grown O
in O
SeMet B-chemical
medium O
. O
Samples O
were O
resolved O
by O
18 O
% O
acrylamide O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
; O
the O
position O
of O
the O
proteins O
found O
in O
the O
complexes O
as O
resolved O
on O
the O
gel O
are O
shown O
with O
arrows O
. O
( O
B O
/ O
C O
) O
Negative B-experimental_method
stain I-experimental_method
TEM I-experimental_method
image O
of O
recombinant O
encapsulin B-protein
and O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartments B-complex_assembly
. O
Representative O
encapsulin B-protein
and O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
complexes O
are O
indicated O
with O
red O
arrows O
. O
We O
produced O
recombinant O
R B-species
. I-species
rubrum I-species
encapsulin B-protein
nanocompartments B-complex_assembly
in O
E B-species
. I-species
coli I-species
by O
co B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
the O
encapsulin B-protein
( O
Rru_A0974 B-gene
) O
and O
EncFtn B-protein
( O
Rru_A0973 B-gene
) O
proteins O
, O
and O
purified O
these O
by O
sucrose B-experimental_method
gradient I-experimental_method
ultra I-experimental_method
- I-experimental_method
centrifugation I-experimental_method
( O
Figure O
1A O
). O
TEM B-experimental_method
imaging O
of O
uranyl O
acetate O
- O
stained O
samples O
revealed O
that O
, O
when O
expressed B-experimental_method
in I-experimental_method
isolation I-experimental_method
, O
the O
encapsulin B-protein
protein O
forms O
empty B-protein_state
compartments B-complex_assembly
with O
an O
average O
diameter O
of O
24 O
nm O
( O
Figure O
1B O
and O
Figure O
1 O
O
figure O
supplement O
1A O
/ O
C O
), O
consistent O
with O
the O
appearance O
and O
size O
of O
the O
T B-species
. I-species
maritima I-species
encapsulin B-protein
. O
We O
were O
not O
able O
to O
resolve O
any O
higher O
- O
order O
structures O
of O
EncFtn B-protein
by O
TEM B-experimental_method
. O
Protein O
purified O
from O
co B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
the O
encapsulin B-protein
and O
EncFtn B-protein
resulted O
in O
24 O
nm O
compartments O
with O
regions O
in O
the O
center O
that O
exclude O
stain O
, O
consistent O
with O
the O
presence B-protein_state
of I-protein_state
the O
EncFtn B-protein
within O
the O
encapsulin B-protein
shell B-structure_element
( O
Figure O
1C O
and O
Figure O
1 O
O
figure O
supplement O
1B O
/ O
C O
). O
R B-species
. I-species
rubrum I-species
EncFtn B-protein
forms O
a O
metal O
- O
ion O
stabilized O
decamer B-oligomeric_state
in O
solution O
Purification B-experimental_method
of I-experimental_method
recombinant I-experimental_method
R B-species
. I-species
rubrum I-species
EncFtnsH B-protein
. O
( O
A O
) O
Recombinant O
SeMet B-protein_state
- I-protein_state
labeled I-protein_state
EncFtnsH B-protein
produced O
with O
1 O
mM O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
in O
the O
growth O
medium O
was O
purified O
by O
nickel B-experimental_method
affinity I-experimental_method
chromatography I-experimental_method
and O
size B-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
using O
a O
Superdex O
200 O
16 O
/ O
60 O
column O
( O
GE O
Healthcare O
). O
Chromatogram B-evidence
traces O
measured O
at O
280 O
nm O
and O
315 O
nm O
are O
shown O
with O
the O
results O
from O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
analysis O
of O
the O
iron B-chemical
content O
of O
the O
fractions O
collected O
during O
the O
experiment O
. O
The O
peak O
around O
73 O
ml O
corresponds O
to O
a O
molecular B-evidence
weight I-evidence
of O
around O
130 O
kDa O
when O
compared O
to O
calibration O
standards O
; O
this O
is O
consistent O
with O
a O
decamer B-oligomeric_state
of O
EncFtnsH B-protein
. O
The O
small O
peak O
at O
85 O
ml O
corresponds O
to O
the O
13 O
kDa O
monomer B-oligomeric_state
compared O
to O
the O
standards O
. O
Only O
the O
decamer B-oligomeric_state
peak O
contains O
significant O
amounts O
of O
iron B-chemical
as O
indicated O
by O
the O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
analysis O
. O
( O
B O
) O
Peak O
fractions O
from O
the O
gel B-experimental_method
filtration I-experimental_method
run O
were O
resolved O
by O
15 O
% O
acrylamide O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
and O
stained O
with O
Coomassie O
blue O
stain O
. O
The O
bands O
around O
13 O
kDa O
and O
26 O
kDa O
correspond O
to O
EncFtnsH B-protein
, O
as O
identified O
by O
MALDI B-experimental_method
peptide I-experimental_method
mass I-experimental_method
fingerprinting I-experimental_method
. O
The O
band O
at O
13 O
kDa O
is O
consistent O
with O
the O
monomer B-oligomeric_state
mass O
, O
while O
the O
band O
at O
26 O
kDa O
is O
consistent O
with O
a O
dimer B-oligomeric_state
of O
EncFtnsH B-protein
. O
The O
dimer B-oligomeric_state
species O
only O
appears O
in O
the O
decamer B-oligomeric_state
fractions O
. O
( O
C O
) O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
analysis O
of O
EncFtnsH B-protein
from O
decamer B-oligomeric_state
fractions O
and O
monomer B-oligomeric_state
fractions O
allows O
assignment O
of O
an O
average O
mass O
of O
132 O
kDa O
to O
decamer B-oligomeric_state
fractions O
and O
13 O
kDa O
to O
monomer B-oligomeric_state
fractions O
, O
consistent O
with O
decamer B-oligomeric_state
and O
monomer B-oligomeric_state
species O
( O
Table O
2 O
). O
Determination O
of O
the O
Fe B-chemical
/ O
EncFtnsH B-protein
protein O
ratio O
by O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
. O
EncFtnsH B-protein
was O
purified O
as O
a O
SeMet B-chemical
derivative O
from O
E B-species
. I-species
coli I-species
B834 I-species
( I-species
DE3 I-species
) I-species
cells O
grown O
in O
SeMet B-chemical
medium O
with O
1 O
mM O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
. O
Fractions O
from O
SEC B-experimental_method
were O
collected O
, O
acidified O
and O
analysed O
by O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
. O
EncFtnsH B-protein
concentration O
was O
calculated O
based O
on O
the O
presence B-protein_state
of I-protein_state
two O
SeMet B-chemical
per O
mature B-protein_state
monomer B-oligomeric_state
. O
These O
data O
were O
collected O
from O
EncFtnsH B-protein
fractions O
from O
a O
single O
gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
run O
. O
Peak O
EncFtnsHretention B-protein
volume O
( O
ml O
) O
Element O
concentration O
( O
µM O
) O
Derived O
EncFtnsHconcentration B-protein
( O
µM O
) O
Derived O
Fe B-chemical
/ O
EncFtnsH B-protein
monomer B-oligomeric_state
Ca B-chemical
Fe B-chemical
Zn B-chemical
Se B-chemical
Decamer B-oligomeric_state
66 O
. O
5 O
n O
. O
d O
. O
Estimates O
of O
EncFtnsH B-protein
molecular B-evidence
weight I-evidence
from O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
analysis O
. O
EncFtnsH B-protein
was O
purified O
from O
E B-species
. I-species
coli I-species
BL21 I-species
( I-species
DE3 I-species
) I-species
grown O
in O
minimal B-experimental_method
medium I-experimental_method
( O
MM B-experimental_method
) O
by O
nickel B-experimental_method
affinity I-experimental_method
chromatography I-experimental_method
and O
size B-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
. O
Fractions O
from O
two O
peaks B-evidence
( O
decamer B-oligomeric_state
and O
monomer B-oligomeric_state
) O
were O
pooled O
separately O
( O
Figure O
1C O
) O
and O
analysed O
by O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
using O
a O
Superdex O
200 O
10 O
/ O
300 O
GL O
column O
( O
GE O
Healthcare O
) O
and O
Viscotek O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
instruments O
( O
Malvern O
Instruments O
) O
( O
Figure O
2C O
). O
The O
decamer B-oligomeric_state
and O
monomer B-oligomeric_state
peaks B-evidence
were O
both O
symmetric O
and O
monodisperse O
, O
allowing O
the O
estimation O
of O
the O
molecular B-evidence
weight I-evidence
of O
the O
species O
in O
these O
fractions O
. O
The O
proteins O
analyzed O
by O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
came O
from O
single O
protein O
preparation O
. O
Molecular B-evidence
Weight I-evidence
( O
kDa O
) O
Decamer B-oligomeric_state
peak O
Monomer B-oligomeric_state
peak O
Theoretical O
133 O
13 O
EncFtnsH B-protein
- O
decamer B-oligomeric_state
fractions O
132 O
15 O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
fractions O
126 O
13 O
We O
purified O
recombinant O
R B-species
. I-species
rubrum I-species
EncFtn B-protein
as O
both O
the O
full B-protein_state
- I-protein_state
length I-protein_state
sequence O
( O
140 B-residue_range
amino I-residue_range
acids I-residue_range
) O
and O
a O
truncated B-protein_state
C O
- O
terminal O
hexahistidine B-protein_state
- I-protein_state
tagged I-protein_state
variant O
( O
amino O
acids O
1 B-residue_range
I-residue_range
96 I-residue_range
plus O
the O
tag O
; O
herein O
EncFtnsH B-protein
). O
In O
both O
cases O
the O
elution B-evidence
profile I-evidence
from O
size B-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
( O
SEC B-experimental_method
) O
displayed O
two O
peaks B-evidence
( O
Figure O
2A O
). O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
analysis O
of O
fractions O
from O
these O
peaks B-evidence
showed O
that O
the O
high O
molecular B-evidence
weight I-evidence
peak O
was O
partially O
resistant O
to O
SDS O
and O
heat O
- O
induced O
denaturation O
; O
in O
contrast O
, O
the O
low O
molecular B-evidence
weight I-evidence
peak O
was O
consistent O
with O
monomeric B-oligomeric_state
mass O
of O
13 O
kDa O
( O
Figure O
2B O
). O
MALDI B-experimental_method
peptide I-experimental_method
mass I-experimental_method
fingerprinting I-experimental_method
of O
these O
bands O
confirmed O
the O
identity O
of O
both O
as O
EncFtn B-protein
. O
Inductively B-experimental_method
coupled I-experimental_method
plasma I-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
( O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
) O
analysis O
of O
the O
SEC B-experimental_method
fractions O
showed O
100 O
times O
more O
iron B-chemical
in O
the O
oligomeric O
fraction O
than O
the O
monomer B-oligomeric_state
( O
Figure O
2A O
, O
blue O
scatter O
points O
; O
Table O
1 O
), O
suggesting O
that O
EncFtn B-protein
oligomerization O
is O
associated O
with O
iron B-chemical
binding O
. O
In O
order O
to O
determine O
the O
iron B-chemical
- O
loading O
stoichiometry O
in O
the O
EncFtn B-protein
complex O
, O
further O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
experiments O
were O
performed O
using O
selenomethionine B-chemical
( O
SeMet B-chemical
)- O
labelled O
protein O
EncFtn B-protein
( O
Table O
1 O
). O
In O
these O
experiments O
, O
we O
observed O
sub O
- O
stoichiometric O
metal O
binding O
, O
which O
is O
in O
contrast O
to O
the O
classical B-protein_state
ferritins B-protein_type
. O
Size B-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
with O
multi B-experimental_method
- I-experimental_method
angle I-experimental_method
laser I-experimental_method
light I-experimental_method
scattering I-experimental_method
( O
SEC B-experimental_method
- I-experimental_method
MALLS I-experimental_method
) O
analysis O
of O
samples O
taken O
from O
each O
peak O
gave O
calculated O
molecular O
weights O
consistent O
with O
a O
decamer B-oligomeric_state
for O
the O
high O
molecular B-evidence
weight I-evidence
peak O
and O
a O
monomer B-oligomeric_state
for O
the O
low O
molecular B-evidence
weight I-evidence
peak O
( O
Figure O
2C O
, O
Table O
2 O
). O
Effect O
of O
metal O
ions O
on O
the O
oligomeric O
state O
of O
EncFtnsH B-protein
in O
solution O
. O
( O
A O
/ O
B O
) O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
was O
incubated B-experimental_method
with O
one O
mole O
equivalent O
of O
various O
metal O
salts O
for O
two O
hours O
prior O
to O
analytical B-experimental_method
gel I-experimental_method
- I-experimental_method
filtration I-experimental_method
using O
a O
Superdex O
200 O
PC O
3 O
. O
2 O
/ O
30 O
column O
. O
Co2 B-chemical
+ I-chemical
and O
Zn2 B-chemical
+ I-chemical
induced O
the O
formation O
of O
the O
decameric B-oligomeric_state
form O
of O
EncFtnsH B-protein
; O
while O
Mn2 B-chemical
+, I-chemical
Mg2 B-chemical
+ I-chemical
and O
Fe3 B-chemical
+ I-chemical
did O
not O
significantly O
alter O
the O
oligomeric O
state O
of O
EncFtnsH B-protein
. O
PAGE B-experimental_method
analysis O
of O
the O
effect O
of O
metal O
ions O
on O
the O
oligomeric O
state O
of O
EncFtnsH B-protein
. O
50 O
µM O
EncFtnsH B-protein
monomer B-oligomeric_state
or O
decamer B-oligomeric_state
samples O
were O
mixed O
with O
equal O
molar O
metal O
ions O
including O
Fe2 B-chemical
+, I-chemical
Co2 B-chemical
+, I-chemical
Zn2 B-chemical
+, I-chemical
Mn2 B-chemical
+, I-chemical
Ca2 B-chemical
+, I-chemical
Mg2 B-chemical
+ I-chemical
and O
Fe3 B-chemical
+, I-chemical
which O
were O
analyzed O
by O
Native B-experimental_method
PAGE I-experimental_method
alongside O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
. O
( O
A O
) O
10 O
% O
Native B-experimental_method
PAGE I-experimental_method
analysis O
of O
EncFtnsH B-protein
monomer B-oligomeric_state
fractions O
mixed O
with O
various O
metal O
solutions O
; O
( O
B O
) O
10 O
% O
Native B-experimental_method
PAGE I-experimental_method
analysis O
of O
EncFtnsH B-protein
decamer B-oligomeric_state
fractions O
mixed O
with O
various O
metal O
solutions O
; O
( O
C O
) O
15 O
% O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
analysis O
on O
the O
mixtures O
of O
EncFtnsH B-protein
monomer B-oligomeric_state
fractions O
and O
metal O
solutions O
; O
( O
D O
) O
15 O
% O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
analysis O
on O
the O
mixtures O
of O
EncFtnsH B-protein
decamer B-oligomeric_state
fractions O
and O
metal O
solutions O
. O
Effect O
of O
Fe2 B-chemical
+ I-chemical
and O
protein O
concentration O
on O
the O
oligomeric O
state O
of O
EncFtnsH B-protein
in O
solution O
. O
( O
A O
) O
Recombinant O
EncFtnsH B-protein
was O
purified O
by O
Gel B-experimental_method
filtration I-experimental_method
Superdex O
200 O
chromatography O
from O
E B-species
. I-species
coli I-species
BL21 I-species
( I-species
DE3 I-species
) I-species
grown O
in O
MM B-experimental_method
or O
in O
MM B-experimental_method
supplemented O
with O
1 O
mM O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
( O
MM B-experimental_method
+ O
Fe2 B-chemical
+). I-chemical
A O
higher O
proportion O
of O
decamer B-oligomeric_state
( O
peak O
between O
65 O
and O
75 O
ml O
) O
is O
seen O
in O
the O
sample O
purified O
from O
MM B-experimental_method
+ O
Fe2 B-chemical
+ I-chemical
compared O
to O
EncFtnsH B-protein
- O
MM B-experimental_method
, O
indicating O
that O
Fe2 B-chemical
+ I-chemical
facilitates O
the O
multimerization O
of O
EncFtnsH B-protein
in O
vivo O
. O
( O
B O
) O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
was O
incubated O
with O
one O
molar O
equivalent O
of O
Fe2 B-chemical
+ I-chemical
salts O
for O
two O
hours O
prior O
to O
analytical B-experimental_method
gel I-experimental_method
- I-experimental_method
filtration I-experimental_method
using O
a O
Superdex O
200 O
PC O
3 O
. O
2 O
/ O
30 O
column O
( O
GE O
Healthcare O
). O
Both O
Fe2 B-chemical
+ I-chemical
salts O
tested O
induced O
the O
formation O
of O
decamer B-oligomeric_state
indicated O
by O
the O
peak O
between O
1 O
. O
2 O
and O
1 O
. O
6 O
ml O
. O
Monomeric B-oligomeric_state
and O
decameric B-oligomeric_state
samples O
of O
EncFtnsH B-protein
are O
shown O
as O
controls O
. O
Peaks B-evidence
around O
0 O
. O
8 O
ml O
were O
seen O
as O
protein O
aggregation O
. O
( O
C O
) O
Analytical B-experimental_method
gel I-experimental_method
filtration I-experimental_method
of O
EncFtn B-protein
monomer B-oligomeric_state
at O
different O
concentrations O
to O
illustrate O
the O
effect O
of O
protein O
concentration O
on O
multimerization O
. O
The O
major O
peak O
shows O
a O
shift O
towards O
a O
dimer B-oligomeric_state
species O
at O
high O
concentration O
of O
protein O
, O
but O
the O
ratio O
of O
this O
peak O
( O
1 O
. O
5 O
O
1 O
. O
8 O
ml O
) O
to O
the O
decamer B-oligomeric_state
peak O
( O
1 O
. O
2 O
O
1 O
. O
5 O
ml O
) O
does O
not O
change O
when O
compared O
to O
the O
low O
concentration O
sample O
. O
Gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
peak B-evidence
area I-evidence
ratios I-evidence
for O
EncFtnsH B-protein
decamer B-oligomeric_state
and O
monomer B-oligomeric_state
on O
addition O
of O
different O
metal O
ions O
. O
EncFtnsH B-protein
was O
produced O
in O
E B-species
. I-species
coli I-species
BL21 I-species
( I-species
DE3 I-species
) I-species
cultured O
in O
MM B-experimental_method
and O
MM B-experimental_method
with O
1 O
mM O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
( O
MM B-experimental_method
+ O
Fe2 B-chemical
+) I-chemical
and O
purified O
by O
gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
chromatography I-experimental_method
using O
an O
Superdex O
200 O
16 O
/ O
60 O
column O
( O
GE O
Healthcare O
). O
Monomer B-oligomeric_state
fractions O
of O
EncFtnsH B-protein
purified O
from O
MM B-experimental_method
were O
pooled O
and O
run O
in O
subsequent O
analytical B-experimental_method
gel I-experimental_method
- I-experimental_method
filtration I-experimental_method
runs O
over O
the O
course O
of O
three O
days O
. O
Samples O
of O
EncFtnsH B-protein
monomer B-oligomeric_state
were O
incubated O
with O
one O
molar O
equivalent O
of O
metal O
ion O
salts O
at O
room O
temperature O
for O
two O
hours O
before O
analysis O
by O
analytical B-experimental_method
gel I-experimental_method
filtration I-experimental_method
chromatography I-experimental_method
( O
AGF B-experimental_method
) O
using O
a O
Superdex O
200 O
10 O
/ O
300 O
GL O
column O
. O
The O
area O
for O
resulting O
protein O
peaks B-evidence
were O
calculated O
using O
the O
Unicorn O
software O
( O
GE O
Healthcare O
); O
peak B-evidence
ratios I-evidence
were O
calculated O
to O
quantify O
the O
propensity O
of O
EncFtnsH B-protein
to O
multimerize O
in O
the O
presence B-protein_state
of I-protein_state
the O
different O
metal O
ions O
. O
The O
change O
in O
the O
ratios O
of O
monomer B-oligomeric_state
to O
decamer B-oligomeric_state
over O
the O
three O
days O
of O
experiments O
may O
be O
a O
consequence O
of O
experimental O
variability O
, O
or O
the O
propensity O
of O
this O
protein O
to O
equilibrate O
towards O
decamer B-oligomeric_state
over O
time O
. O
The O
increased O
decamer B-oligomeric_state
: O
monomer B-oligomeric_state
ratio O
seen O
in O
the O
presence B-protein_state
of I-protein_state
Fe2 B-chemical
+, I-chemical
Co2 B-chemical
+, I-chemical
and O
Zn2 B-chemical
+ I-chemical
indicates O
that O
these O
metal O
ions O
facilitate O
multimerization O
of O
the O
EncFtnsH B-protein
protein O
, O
while O
the O
other O
metal O
ions O
tested O
do O
not O
appear O
to O
induce O
multimerization O
. O
The O
analytical B-experimental_method
gel I-experimental_method
filtration I-experimental_method
experiment O
was O
repeated O
twice O
using O
two O
independent O
preparations O
of O
protein O
, O
of O
which O
values O
calculated O
from O
one O
sample O
are O
presented O
here O
. O
Method O
Sample O
Monomer B-oligomeric_state
area O
Decamer B-oligomeric_state
area O
Decamer B-oligomeric_state
/ O
Monomer B-oligomeric_state
Gel B-experimental_method
filtration I-experimental_method
Superdex O
200 O
chromatography O
EncFtnsH B-protein
- O
MM B-experimental_method
64 O
. O
3 O
583 O
. O
6 O
0 O
. O
1 O
EncFtnsH B-protein
- O
MM B-experimental_method
+ O
Fe2 B-chemical
+ I-chemical
1938 O
. O
4 O
426 O
. O
4 O
4 O
. O
5 O
Analytical B-experimental_method
Gel I-experimental_method
filtration I-experimental_method
Day1 O
EncFtnsH B-protein
- O
decamer B-oligomeric_state
fractions O
20 O
. O
2 O
1 O
. O
8 O
11 O
. O
2 O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
fractions O
2 O
. O
9 O
21 O
. O
9 O
0 O
. O
1 O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
11 O
. O
0 O
13 O
. O
0 O
0 O
. O
8 O
FeSO4 B-chemical
- I-chemical
HCl I-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
11 O
. O
3 O
11 O
. O
4 O
1 O
. O
0 O
Analytical B-experimental_method
Gel I-experimental_method
filtration I-experimental_method
Day2 O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
fractions O
8 O
. O
3 O
22 O
. O
8 O
0 O
. O
4 O
CoCl2 B-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
17 O
. O
7 O
14 O
. O
5 O
1 O
. O
2 O
MnCl2 B-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
3 O
. O
1 O
30 O
. O
5 O
0 O
. O
1 O
ZnSO4 B-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
20 O
. O
4 O
9 O
. O
0 O
2 O
. O
3 O
FeCl3 B-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
3 O
. O
9 O
28 O
. O
6 O
0 O
. O
1 O
Analytical B-experimental_method
Gel I-experimental_method
filtration I-experimental_method
Day3 O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
fractions O
6 O
. O
3 O
23 O
. O
4 O
0 O
. O
3 O
MgSO4 B-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
5 O
. O
8 O
30 O
. O
2 O
0 O
. O
2 O
Ca B-chemical
acetate I-chemical
/ O
EncFtnsH B-protein
- O
monomer B-oligomeric_state
5 O
. O
6 O
25 O
. O
2 O
0 O
. O
2 O
We O
purified O
EncFtnsH B-protein
from O
E B-species
. I-species
coli I-species
grown O
in O
MM B-experimental_method
with O
or O
without O
the O
addition O
of O
1 O
mM O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
. O
The O
decamer B-oligomeric_state
to O
monomer B-oligomeric_state
ratio O
in O
the O
sample O
purified O
from O
cells O
grown O
in O
iron B-chemical
- O
supplemented O
media O
was O
4 O
. O
5 O
, O
while O
that O
from O
the O
iron B-protein_state
- I-protein_state
free I-protein_state
media O
was O
0 O
. O
11 O
, O
suggesting O
that O
iron B-chemical
induces O
the O
oligomerization O
of O
EncFtnsH B-protein
in O
vivo O
( O
Figure O
3A O
, O
Table O
3 O
). O
To O
test O
the O
metal O
- O
dependent O
oligomerization O
of O
EncFtnsH B-protein
in O
vitro O
, O
we O
incubated B-experimental_method
the O
protein O
with O
various O
metal O
cations O
and O
subjected O
samples O
to O
analytical B-experimental_method
SEC I-experimental_method
and O
non B-experimental_method
- I-experimental_method
denaturing I-experimental_method
PAGE I-experimental_method
. O
Of O
the O
metals O
tested O
, O
only O
Fe2 B-chemical
+, I-chemical
Zn2 B-chemical
+ I-chemical
and O
Co2 B-chemical
+ I-chemical
induced O
the O
formation O
of O
significant O
amounts O
of O
the O
decamer B-oligomeric_state
( O
Figure O
3B O
, O
Figure O
3 O
O
figure O
supplement O
1 O
/ O
2 O
). O
While O
Fe2 B-chemical
+ I-chemical
induces O
the O
multimerization O
of O
EncFtnsH B-protein
, O
Fe3 B-chemical
+ I-chemical
in O
the O
form O
of O
FeCl3 B-chemical
does O
not O
have O
this O
effect O
on O
the O
protein O
, O
highlighting O
the O
apparent O
preference O
this O
protein O
has O
for O
the O
ferrous B-chemical
form I-chemical
of I-chemical
iron I-chemical
. O
To O
determine O
if O
the O
oligomerization O
of O
EncFtnsH B-protein
was O
concentration O
dependent O
we O
performed O
analytical B-experimental_method
SEC I-experimental_method
at O
90 O
and O
700 O
µM O
protein O
concentration O
( O
Figure O
3C O
). O
At O
the O
higher O
concentration O
, O
no O
increase O
in O
the O
decameric B-oligomeric_state
form O
of O
EncFtn B-protein
was O
observed O
; O
however O
, O
the O
shift O
in O
the O
major O
peak O
from O
the O
position O
of O
the O
monomer B-oligomeric_state
species O
indicated O
a O
tendency O
to O
dimerize B-oligomeric_state
at O
high O
concentration O
. O
Crystal B-evidence
structure I-evidence
of O
EncFtnsH B-protein
Electrostatic O
surface O
of O
EncFtnsH B-protein
. O
The O
solvent O
accessible O
surface O
of O
EncFtnsH B-protein
is O
shown O
, O
colored O
by O
electrostatic O
potential O
as O
calculated O
using O
the O
APBS O
plugin O
in O
PyMOL O
. O
Negatively O
charged O
regions O
are O
colored O
red O
and O
positive O
regions O
in O
blue O
, O
neutral O
regions O
in O
grey O
. O
( O
A O
) O
View O
of O
the O
surface O
of O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
looking O
down O
the O
central O
axis O
. O
( O
B O
) O
Orthogonal O
view O
of O
( O
A O
). O
( O
C O
) O
Cutaway O
view O
of O
( O
B O
) O
showing O
the O
charge O
distribution O
within O
the O
central B-site
cavity I-site
. O
Crystal B-evidence
structure I-evidence
of O
EncFtnsH B-protein
. O
( O
A O
) O
Overall O
architecture O
of O
EncFtnsH B-protein
. O
Transparent O
solvent O
accessible O
surface O
view O
with O
α B-structure_element
- I-structure_element
helices I-structure_element
shown O
as O
tubes O
and O
bound O
metal O
ions O
as O
spheres O
. O
Alternating O
subunits B-structure_element
are O
colored O
blue O
and O
green O
for O
clarity O
. O
The O
doughnut B-structure_element
- I-structure_element
like I-structure_element
decamer B-oligomeric_state
is O
7 O
nm O
in O
diameter O
and O
4 O
. O
5 O
nm O
thick O
. O
( O
B O
) O
Monomer B-oligomeric_state
of O
EncFtnsH B-protein
shown O
as O
a O
secondary O
structure O
cartoon O
. O
( O
C O
/ O
D O
) O
Dimer B-site
interfaces I-site
formed O
in O
the O
decameric B-oligomeric_state
ring B-structure_element
of O
EncFtnsH B-protein
. O
Subunits B-structure_element
are O
shown O
as O
secondary O
structure O
cartoons O
and O
colored O
blue O
and O
green O
for O
clarity O
. O
Bound O
metal O
ions O
are O
shown O
as O
orange O
spheres O
for O
Fe3 B-chemical
+ I-chemical
and O
grey O
and O
white O
spheres O
for O
Ca2 B-chemical
+. I-chemical
We O
determined O
the O
crystal B-evidence
structure I-evidence
of O
EncFtnsH B-protein
by O
molecular B-experimental_method
replacement I-experimental_method
to O
2 O
. O
0 O
Å O
resolution O
( O
see O
Table O
1 O
for O
X B-evidence
- I-evidence
ray I-evidence
data I-evidence
collection I-evidence
and I-evidence
refinement I-evidence
statistics I-evidence
). O
The O
crystallographic O
asymmetric O
unit O
contained O
thirty O
monomers B-oligomeric_state
of O
EncFtn B-protein
with O
visible O
electron B-evidence
density I-evidence
for O
residues O
7 B-residue_range
I-residue_range
96 I-residue_range
in O
each O
chain O
. O
The O
protein O
chains O
were O
arranged O
as O
three O
identical O
annular B-structure_element
decamers B-oligomeric_state
, O
each O
with O
D5 O
symmetry O
. O
The O
decamer B-oligomeric_state
has O
a O
diameter O
of O
7 O
nm O
and O
thickness O
of O
4 O
nm O
( O
Figure O
4A O
). O
The O
monomer B-oligomeric_state
of O
EncFtn B-protein
has O
an O
N O
- O
terminal O
310 B-structure_element
- I-structure_element
helix I-structure_element
that O
precedes O
two O
4 O
nm O
long O
antiparallel B-structure_element
α I-structure_element
- I-structure_element
helices I-structure_element
arranged O
with O
their O
long O
axes O
at O
25 O
° O
to O
each O
other O
; O
these O
helices B-structure_element
are O
followed O
by O
a O
shorter O
1 O
. O
4 O
nm O
helix B-structure_element
projecting O
at O
70 O
° O
from O
α2 B-structure_element
( O
Figure O
4B O
). O
The O
C B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
the O
crystallized O
construct O
extends O
from O
the O
outer O
circumference O
of O
the O
ring B-structure_element
, O
indicating O
that O
the O
encapsulin B-site
localization I-site
sequence I-site
in O
the O
full B-protein_state
- I-protein_state
length I-protein_state
protein O
is O
on O
the O
exterior O
of O
the O
ring B-structure_element
and O
is O
thus O
free O
to O
interact O
with O
its O
binding B-site
site I-site
on O
the O
encapsulin B-protein
shell B-structure_element
protein O
. O
The O
monomer B-oligomeric_state
of O
EncFtnsH B-protein
forms O
two O
distinct O
dimer B-site
interfaces I-site
within O
the O
decamer B-oligomeric_state
( O
Figure O
4 O
C O
/ O
D O
). O
The O
first O
dimer B-oligomeric_state
is O
formed O
from O
two O
monomers B-oligomeric_state
arranged O
antiparallel O
to O
each O
other O
, O
with O
α1 B-structure_element
from O
each O
monomer B-oligomeric_state
interacting O
along O
their O
lengths O
and O
α3 B-structure_element
interdigitating O
with O
α2 B-structure_element
and O
α3 B-structure_element
of O
the O
partner O
chain O
. O
This O
interface B-site
buries O
one O
third O
of O
the O
surface O
area O
from O
each O
partner O
and O
is O
stabilized O
by O
thirty O
hydrogen B-bond_interaction
bonds I-bond_interaction
and O
fourteen O
salt B-bond_interaction
bridges I-bond_interaction
( O
Figure O
4C O
). O
The O
second O
dimer B-site
interface I-site
forms O
an O
antiparallel B-structure_element
four I-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
between O
helices B-structure_element
1 I-structure_element
and I-structure_element
2 I-structure_element
from O
each O
monomer B-oligomeric_state
( O
Figure O
4D O
). O
This O
interface B-site
is O
less O
extensive O
than O
the O
first O
and O
is O
stabilized O
by O
twenty O
- O
one O
hydrogen B-bond_interaction
bonds I-bond_interaction
, O
six O
salt B-bond_interaction
bridges I-bond_interaction
, O
and O
a O
number O
of O
metal O
ions O
. O
The O
arrangement O
of O
ten O
monomers B-oligomeric_state
in O
alternating O
orientation O
forms O
the O
decamer B-oligomeric_state
of O
EncFtn B-protein
, O
which O
assembles O
as O
a O
pentamer B-oligomeric_state
of O
dimers B-oligomeric_state
( O
Figure O
4A O
). O
Each O
monomer B-oligomeric_state
lies O
at O
45 O
° O
relative O
to O
the O
vertical O
central O
- O
axis O
of O
the O
ring B-structure_element
, O
with O
the O
N O
- O
termini O
of O
alternating O
subunits B-structure_element
capping O
the O
center O
of O
the O
ring B-structure_element
at O
each O
end O
, O
while O
the O
C O
- O
termini O
are O
arranged O
around O
the O
circumference O
. O
The O
central B-site
hole I-site
in O
the O
ring B-structure_element
is O
2 O
. O
5 O
nm O
at O
its O
widest O
in O
the O
center O
of O
the O
complex O
, O
and O
1 O
. O
5 O
nm O
at O
its O
narrowest O
point O
near O
the O
outer O
surface O
, O
although O
it O
should O
be O
noted O
that O
a O
number O
of O
residues O
at O
the O
N O
- O
terminus O
are O
not O
visible O
in O
the O
crystallographic B-evidence
electron I-evidence
density I-evidence
and O
these O
may O
occupy O
the O
central B-site
channel I-site
. O
The O
surface O
of O
the O
decamer B-oligomeric_state
has O
distinct O
negatively B-site
charged I-site
patches I-site
, O
both O
within O
the O
central B-site
hole I-site
and O
on O
the O
outer O
circumference O
, O
which O
form O
spokes B-structure_element
through O
the O
radius O
of O
the O
complex O
( O
Figure O
4 O
O
figure O
supplement O
1 O
). O
EncFtn B-protein
ferroxidase B-site
center I-site
Putative O
ligand B-site
- I-site
binding I-site
site I-site
in O
EncFtnsH B-protein
. O
( O
A O
) O
Wall O
- O
eyed O
stereo O
view O
of O
the O
dimer B-site
interface I-site
of O
EncFtn B-protein
. O
Protein O
chains O
are O
shown O
as O
sticks O
, O
with O
2mFo B-evidence
- I-evidence
DFc I-evidence
electron I-evidence
density I-evidence
shown O
in O
blue O
mesh O
and O
contoured O
at O
1 O
. O
5 O
σ O
and O
mFo B-evidence
- I-evidence
DFc I-evidence
shown O
in O
green O
mesh O
and O
contoured O
at O
3 O
σ O
. O
( O
B O
) O
Wall O
- O
eyed O
stereo O
view O
of O
putative O
metal B-site
binding I-site
site I-site
at O
the O
external O
surface O
of O
EncFtnsH B-protein
. O
Protein O
chains O
and O
electron B-evidence
density I-evidence
maps I-evidence
are O
shown O
as O
in O
( O
A O
). O
EncFtnsH B-protein
metal B-site
binding I-site
sites I-site
. O
( O
A O
) O
Wall O
- O
eyed O
stereo O
view O
of O
the O
metal B-site
- I-site
binding I-site
dimerization I-site
interface I-site
of O
EncFtnsH B-protein
. O
Protein O
residues O
are O
shown O
as O
sticks O
with O
blue O
and O
green O
carbons O
for O
the O
different O
subunits B-structure_element
, O
iron B-chemical
ions O
are O
shown O
as O
orange O
spheres O
and O
calcium B-chemical
as O
grey O
spheres O
, O
and O
the O
glycolic B-chemical
acid I-chemical
ligand O
is O
shown O
with O
yellow O
carbon O
atoms O
coordinated O
above O
the O
di B-site
- I-site
iron I-site
center I-site
. O
The O
2mFo B-evidence
- I-evidence
DFc I-evidence
electron I-evidence
density I-evidence
map I-evidence
is O
shown O
as O
a O
blue O
mesh O
contoured O
at O
1 O
. O
5 O
σ O
and O
the O
NCS B-evidence
- I-evidence
averaged I-evidence
anomalous I-evidence
difference I-evidence
map I-evidence
is O
shown O
as O
an O
orange O
mesh O
and O
contoured O
at O
10 O
σ O
. O
( O
B O
) O
Iron B-chemical
coordination B-bond_interaction
within O
the O
FOC B-site
including O
residues O
Glu32 B-residue_name_number
, O
Glu62 B-residue_name_number
, O
His65 B-residue_name_number
and O
Tyr39 B-residue_name_number
from O
two O
chains O
. O
Protein O
and O
metal O
ions O
are O
shown O
as O
in O
A O
. O
Coordination B-bond_interaction
between O
the O
protein O
and O
iron B-chemical
ions O
is O
shown O
as O
yellow O
dashed O
lines O
with O
distances O
indicated O
. O
( O
C O
) O
Coordination B-bond_interaction
of O
calcium B-chemical
within O
the O
dimer B-site
interface I-site
by O
four O
glutamic B-residue_name
acid I-residue_name
residues O
( O
E31 B-residue_name_number
and O
E34 B-residue_name_number
from O
two O
chains O
). O
The O
calcium B-chemical
ion O
is O
shown O
as O
a O
grey O
sphere O
and O
water B-chemical
molecules O
involved O
in O
the O
coordination B-bond_interaction
of O
the O
calcium B-chemical
ion O
are O
shown O
as O
crosses O
. O
( O
D O
) O
Metal B-site
coordination I-site
site I-site
on O
the O
outer O
surface O
of O
EncFtnsH B-protein
. O
The O
two O
calcium B-chemical
ions O
are O
coordinated B-bond_interaction
by I-bond_interaction
residues O
His57 B-residue_name_number
, O
Glu61 B-residue_name_number
and O
Glu64 B-residue_name_number
from O
the O
two O
chains O
of O
the O
FOC B-site
dimer B-oligomeric_state
, O
and O
are O
located O
at O
the O
outer O
surface O
of O
the O
complex O
, O
positioned O
10 O
Å O
away O
from O
the O
FOC B-site
iron B-chemical
. O
The O
electron B-evidence
density I-evidence
maps I-evidence
of O
the O
initial O
EncFtnsH B-protein
model O
displayed O
significant O
positive O
peaks O
in O
the O
mFo B-evidence
- I-evidence
DFc I-evidence
map I-evidence
at O
the O
center O
of O
the O
4 B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
dimer B-oligomeric_state
( O
Figure O
5 O
O
figure O
supplement O
1 O
). O
Informed O
by O
the O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
data O
indicating O
the O
presence B-protein_state
of I-protein_state
iron B-chemical
in O
the O
protein O
we O
collected O
diffraction B-evidence
data I-evidence
at O
the O
experimentally O
determined O
iron B-chemical
absorption O
edge O
( O
1 O
. O
74 O
Å O
) O
and O
calculated O
an O
anomalous B-evidence
difference I-evidence
Fourier I-evidence
map I-evidence
using O
this O
data O
. O
Inspection O
of O
this O
map B-evidence
showed O
two O
10 O
- O
sigma O
peaks B-evidence
between O
residues O
Glu32 B-residue_name_number
, O
Glu62 B-residue_name_number
and O
His65 B-residue_name_number
of O
two O
adjacent O
chains O
, O
and O
a O
statistically O
smaller O
5 O
- O
sigma O
peak O
between O
residues O
Glu31 B-residue_name_number
and O
Glu34 B-residue_name_number
of O
the O
two O
chains O
. O
Modeling O
metal O
ions O
into O
these O
peaks O
and O
refinement B-experimental_method
of O
the O
anomalous B-evidence
scattering I-evidence
parameters I-evidence
allowed O
us O
to O
identify O
these O
as O
two O
iron B-chemical
ions O
and O
a O
calcium B-chemical
ion O
respectively O
( O
Figure O
5A O
). O
An O
additional O
region O
of O
asymmetric O
electron B-evidence
density I-evidence
near O
the O
di B-site
- I-site
iron I-site
binding I-site
site I-site
in O
the O
mFo B-evidence
- I-evidence
DFc I-evidence
map I-evidence
was O
modeled O
as O
glycolic B-chemical
acid I-chemical
, O
presumably O
a O
breakdown O
product O
of O
the O
PEG B-chemical
3350 I-chemical
used O
for O
crystallization O
. O
This O
di B-site
- I-site
iron I-site
center I-site
has O
an O
Fe B-evidence
- I-evidence
Fe I-evidence
distance I-evidence
of O
3 O
. O
5 O
Å O
, O
Fe B-evidence
- I-evidence
Glu I-evidence
- I-evidence
O I-evidence
distances I-evidence
between O
2 O
. O
3 O
and O
2 O
. O
5 O
Å O
, O
and O
Fe B-evidence
- I-evidence
His I-evidence
- I-evidence
N I-evidence
distances I-evidence
of O
2 O
. O
5 O
Å O
( O
Figure O
5B O
). O
This O
coordination B-bond_interaction
geometry O
is O
consistent O
with O
the O
di B-site
- I-site
nuclear I-site
ferroxidase I-site
center I-site
( O
FOC B-site
) O
found O
in O
ferritin B-protein_type
. O
It O
is O
interesting O
to O
note O
that O
although O
we O
did O
not O
add O
any O
additional O
iron B-chemical
to O
the O
crystallization B-experimental_method
trials I-experimental_method
, O
the O
FOC B-site
was O
fully O
occupied O
with O
iron B-chemical
in O
the O
final O
structure B-evidence
, O
implying O
that O
this O
site O
has O
a O
very O
high O
affinity B-evidence
for O
iron B-chemical
. O
The O
calcium B-chemical
ion O
coordinated B-bond_interaction
by I-bond_interaction
Glu31 B-residue_name_number
and O
Glu34 B-residue_name_number
adopts O
heptacoordinate B-protein_state
geometry O
, O
with O
coordination B-bond_interaction
distances O
of O
2 O
. O
5 O
Å O
between O
the O
metal O
ion O
and O
carboxylate O
oxygens O
of O
Glu31 B-residue_name_number
and O
Glu34 B-residue_name_number
( O
E31 B-site
/ I-site
34 I-site
- I-site
site I-site
). O
A O
number O
of O
ordered O
solvent O
molecules O
are O
also O
coordinated B-bond_interaction
to O
this O
metal O
ion O
at O
a O
distance O
of O
2 O
. O
5 O
Å O
. O
This O
heptacoordinate B-protein_state
geometry O
is O
common O
in O
crystal B-evidence
structures I-evidence
with O
calcium B-chemical
ions O
( O
Figure O
5C O
). O
While O
ICP B-experimental_method
- I-experimental_method
MS I-experimental_method
indicated O
that O
there O
were O
negligible O
amounts O
of O
calcium B-chemical
in O
the O
purified O
protein O
, O
the O
presence B-protein_state
of I-protein_state
140 O
mM O
calcium B-chemical
acetate I-chemical
in O
the O
crystallization O
mother O
liquor O
favors O
the O
coordination B-bond_interaction
of O
calcium B-chemical
at O
this O
site O
. O
The O
fact O
that O
the O
protein O
does O
not O
multimerize O
in O
solution O
in O
the O
presence B-protein_state
of I-protein_state
Fe3 B-chemical
+ I-chemical
may O
indicate O
that O
these O
metal B-site
binding I-site
sites I-site
have O
a O
lower O
affinity O
for O
the O
ferric O
form O
of O
iron B-chemical
, O
which O
is O
the O
product O
of O
the O
ferroxidase B-protein_type
reaction O
. O
A O
number O
of O
additional O
metal O
- O
ions O
were O
present O
at O
the O
outer O
circumference O
of O
at O
least O
one O
decamer B-oligomeric_state
in O
the O
asymmetric O
unit O
( O
Figure O
5D O
). O
These O
ions O
are O
coordinated B-bond_interaction
by I-bond_interaction
His57 B-residue_name_number
, O
Glu61 B-residue_name_number
and O
Glu64 B-residue_name_number
from O
both O
chains O
in O
the O
FOC B-site
dimer B-oligomeric_state
and O
are O
4 O
. O
5 O
Å O
apart O
; O
Fe B-evidence
- I-evidence
Glu I-evidence
- I-evidence
O I-evidence
distances O
are O
between O
2 O
. O
5 O
and O
3 O
. O
5 O
Å O
and O
the O
Fe B-evidence
- I-evidence
His I-evidence
- I-evidence
N I-evidence
distances I-evidence
are O
4 O
and O
4 O
. O
5 O
Å O
. O
Comparison O
of O
quaternary O
structure O
of O
EncFtnsH B-protein
and O
ferritin B-protein_type
. O
( O
A O
) O
Aligned B-experimental_method
FOC B-site
of O
EncFtnsH B-protein
and O
Pseudo B-species
- I-species
nitzschia I-species
multiseries I-species
ferritin B-protein
( O
PmFtn B-protein
). O
The O
metal B-site
binding I-site
site I-site
residues O
from O
two O
EncFtnsH B-protein
chains O
are O
shown O
in O
green O
and O
blue O
, O
while O
the O
PmFtn B-protein
is O
shown O
in O
orange O
. O
Fe2 B-chemical
+ I-chemical
in O
the O
FOC B-site
is O
shown O
as O
orange O
spheres O
and O
Ca2 B-chemical
+ I-chemical
in O
EncFtnsH B-protein
is O
shown O
as O
a O
grey O
sphere O
. O
The O
two O
- O
fold O
symmetry O
axis O
of O
the O
EncFtn B-protein
FOC B-site
is O
shown O
with O
a O
grey O
arrow O
( O
B O
) O
Cross O
- O
section O
surface O
view O
of O
quaternary O
structure O
of O
EncFtnsH B-protein
and O
PmFtn B-protein
as O
aligned O
in O
( O
A O
) O
( O
dashed O
black O
box O
). O
The O
central B-site
channel I-site
of O
EncFtnsH B-protein
is O
spatially O
equivalent O
to O
the O
outer O
surface O
of O
ferritin B-protein_type
and O
its O
outer O
surface O
corresponds O
to O
the O
mineralization B-site
surface I-site
within O
ferritin B-protein_type
. O
Comparison B-experimental_method
of O
the O
symmetric O
metal B-site
ion I-site
binding I-site
site I-site
of O
EncFtnsH B-protein
and O
the O
ferritin B-protein_type
FOC B-site
. O
( O
A O
) O
Structural B-experimental_method
alignment I-experimental_method
of O
the O
FOC B-site
residues O
in O
a O
dimer B-oligomeric_state
of O
EncFtnsH B-protein
( O
green O
/ O
blue O
) O
with O
a O
monomer B-oligomeric_state
of O
Pseudo B-species
- I-species
nitzschia I-species
multiseries I-species
ferritin B-protein
( O
PmFtn B-protein
) O
( O
PDBID O
: O
4ITW O
) O
( O
orange O
). O
Iron B-chemical
ions O
are O
shown O
as O
orange O
spheres O
and O
a O
single O
calcium B-chemical
ion O
as O
a O
grey O
sphere O
. O
Residues O
within O
the O
FOC B-site
are O
conserved B-protein_state
between O
EncFtn B-protein
and O
ferritin B-protein_type
PmFtn B-protein
, O
with O
the O
exception O
of O
residues O
in O
the O
position O
equivalent O
to O
H65 B-residue_name_number
O
in O
the O
second O
subunit B-oligomeric_state
in O
the O
dimer B-oligomeric_state
( O
blue O
). O
The O
site O
in O
EncFtn B-protein
with O
bound B-protein_state
calcium B-chemical
is O
not O
present O
in O
other O
family O
members O
. O
( O
B O
) O
Secondary O
structure O
of O
aligned B-experimental_method
dimeric B-oligomeric_state
EncFtnsH B-protein
and O
monomeric B-oligomeric_state
ferritin B-protein_type
highlighting O
the O
conserved B-protein_state
four B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
. O
EncFtnsH B-protein
monomers B-oligomeric_state
are O
shown O
in O
green O
and O
blue O
and O
aligned B-experimental_method
PmFtn B-protein
monomer B-oligomeric_state
in O
orange O
as O
in O
A O
. O
( O
C O
) O
Cartoon O
of O
secondary O
structure O
elements O
in O
EncFtn B-protein
dimer B-oligomeric_state
and O
ferritin B-protein_type
. O
In O
the O
dimer B-oligomeric_state
of O
EncFtn B-protein
that O
forms O
the O
FOC B-site
, O
the O
C O
- O
terminus O
of O
the O
first O
monomer B-oligomeric_state
( O
green O
) O
and O
N O
- O
terminus O
of O
the O
second O
monomer B-oligomeric_state
( O
blue O
) O
correspond O
to O
the O
position O
of O
the O
long B-structure_element
linker I-structure_element
between O
α2 B-structure_element
and O
α3 B-structure_element
in O
ferritin B-protein_type
PmFtn B-protein
. O
Structural B-experimental_method
alignment I-experimental_method
of O
the O
di B-site
- I-site
iron I-site
binding I-site
site I-site
of O
EncFtnsH B-protein
to O
the O
FOC B-site
of O
Pseudo B-species
- I-species
nitzschia I-species
multiseries I-species
ferritin B-protein_type
( O
PmFtn B-protein
, O
PDB O
ID O
: O
4ITW O
) O
reveals O
a O
striking O
similarity O
between O
the O
metal B-site
binding I-site
sites I-site
of O
EncFtnsH B-protein
and O
the O
classical B-protein_state
ferritins B-protein_type
( O
Figure O
6A O
). O
The O
di B-site
- I-site
iron I-site
site I-site
of O
EncFtnsH B-protein
is O
by O
necessity O
symmetrical O
, O
as O
it O
is O
formed O
through O
a O
dimer B-site
interface I-site
, O
while O
the O
FOC B-site
of O
ferritin B-protein_type
does O
not O
have O
these O
constraints O
and O
varies O
in O
different O
species O
at O
a O
position O
equivalent O
to O
His65 B-residue_name_number
of O
the O
second O
EncFtn B-protein
monomer B-oligomeric_state
in O
the O
FOC B-site
interface I-site
( O
His65 B-residue_name_number
) O
( O
Figure O
6A O
). O
Structural B-experimental_method
superimposition I-experimental_method
of O
the O
FOCs B-site
of O
ferritin B-protein_type
and O
EncFtn B-protein
brings O
the O
four B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
of O
the O
ferritin B-protein_type
fold O
into O
close O
alignment O
with O
the O
EncFtn B-protein
dimer B-oligomeric_state
, O
showing O
that O
the O
two O
families O
of O
proteins O
have O
essentially O
the O
same O
architecture O
around O
the O
di B-site
- I-site
iron I-site
center I-site
( O
Figure O
6B O
). O
The O
linker B-structure_element
connecting O
helices B-structure_element
2 I-structure_element
and I-structure_element
3 I-structure_element
of O
ferritin B-protein_type
is O
congruent O
with O
the O
start O
of O
the O
C O
- O
terminal O
helix B-structure_element
of O
one O
EncFtn B-protein
monomer B-oligomeric_state
and O
the O
N O
- O
terminal O
310 B-structure_element
helix I-structure_element
of O
the O
second O
monomer B-oligomeric_state
( O
Figure O
6C O
). O
Mass B-experimental_method
spectrometry I-experimental_method
of O
the O
EncFtn B-protein
assembly O
Native B-experimental_method
IM I-experimental_method
- I-experimental_method
MS I-experimental_method
analysis O
of O
the O
apo B-protein_state
- O
EncFtnsH B-protein
monomer B-oligomeric_state
. O
( O
A O
) O
Mass B-evidence
spectrum I-evidence
of O
apo B-protein_state
- O
EncFtnsH B-protein
acquired O
from O
100 O
mM O
ammonium O
acetate O
pH O
8 O
. O
0 O
under O
native B-experimental_method
MS I-experimental_method
conditions O
. O
The O
charge B-evidence
state I-evidence
distribution O
observed O
is O
bimodal O
, O
with O
peaks B-evidence
corresponding O
to O
the O
6 O
+ O
to O
15 O
+ O
charge B-evidence
states I-evidence
of O
apo B-protein_state
- O
monomer B-oligomeric_state
EncFtnsH B-protein
( O
neutral O
average O
mass O
13 O
, O
194 O
. O
3 O
Da O
). O
( O
B O
) O
The O
arrival B-evidence
time I-evidence
distributions I-evidence
( O
ion B-evidence
mobility I-evidence
data I-evidence
) O
of O
all O
ions O
in O
the O
apo B-protein_state
- O
EncFtnsH B-protein
charge B-evidence
state I-evidence
distribution O
displayed O
as O
a O
greyscale O
heat O
map O
( O
linear O
intensity O
scale O
). O
( O
B O
) O
Right O
, O
the O
arrival B-evidence
time I-evidence
distribution I-evidence
of O
the O
6 O
+ O
( O
orange O
) O
and O
7 O
+ O
( O
green O
) O
charge B-evidence
state I-evidence
( O
dashed O
colored O
O
box O
) O
has O
been O
extracted O
and O
plotted O
; O
The O
arrival B-evidence
time I-evidence
distributions I-evidence
for O
these O
ion O
is O
shown O
( O
ms O
), O
along O
with O
the O
calibrated O
collision B-evidence
cross I-evidence
section I-evidence
, O
Ω B-evidence
( O
nm2 O
). O
( O
C O
) O
The O
collision B-evidence
cross I-evidence
section I-evidence
of O
a O
single O
monomer B-oligomeric_state
unit O
from O
the O
crystal B-evidence
structure I-evidence
of O
the O
Fe B-protein_state
- I-protein_state
loaded I-protein_state
EncFtnsH B-protein
decamer B-oligomeric_state
was O
calculated O
to O
be O
15 O
. O
8 O
nm2 O
using O
IMPACT O
v O
. O
0 O
. O
9 O
. O
1 O
. O
The O
+ O
8 O
to O
+ O
15 O
protein O
charge B-evidence
states I-evidence
have O
observed O
CCS B-evidence
between O
20 O
O
26 O
nm2 O
, O
which O
is O
significantly O
higher O
than O
the O
calculated O
CCS B-evidence
for O
an O
EncFtnsH B-protein
monomer B-oligomeric_state
taken O
from O
the O
decameric B-oligomeric_state
assembly O
crystal B-evidence
structure I-evidence
( O
15 O
. O
8 O
nm2 O
). O
The O
mobility B-evidence
of O
the O
+ O
7 O
charge B-evidence
state I-evidence
displays O
broad O
drift B-evidence
- I-evidence
time I-evidence
distribution I-evidence
with O
maxima O
consistent O
with O
CCS B-evidence
of O
15 O
. O
9 O
and O
17 O
. O
9 O
nm2 O
. O
Finally O
, O
the O
6 O
+ O
charge B-evidence
state I-evidence
of O
EncFtnsH B-protein
has O
mobility B-evidence
consistent O
with O
a O
CCS B-evidence
of O
12 O
. O
3 O
nm2 O
, O
indicating O
a O
more O
compact B-protein_state
/ O
collapsed B-protein_state
structure O
. O
It O
is O
clear O
from O
this O
data O
that O
apo B-protein_state
- O
EncFtnsH B-protein
exists O
in O
several O
gas O
phase O
conformations O
. O
The O
range O
of O
charge B-evidence
states I-evidence
occupied O
by O
the O
protein O
( O
6 O
+ O
to O
15 O
+) O
and O
the O
range O
of O
CCS B-evidence
in O
which O
the O
protein O
is O
observed O
( O
12 O
. O
3 O
nm2 O
O
26 O
nm2 O
) O
are O
both O
large O
. O
In O
addition O
, O
many O
of O
the O
charge B-evidence
states I-evidence
observed O
have O
higher O
charge O
than O
the O
theoretical O
maximal O
charge O
on O
spherical O
globular B-protein_state
protein O
, O
as O
determined O
by O
the O
De B-experimental_method
La I-experimental_method
Mora I-experimental_method
relationship I-experimental_method
( O
ZR B-evidence
= O
0 O
. O
0778m O
; O
for O
the O
EncFtnsH B-protein
monomer B-oligomeric_state
ZR B-evidence
= O
8 O
. O
9 O
) O
Fernandez O
. O
As O
described O
by O
Beveridge O
et O
al O
., O
all O
these O
factors O
are O
indicative O
of O
a O
disordered B-protein_state
protein O
. O
Gas O
- O
phase O
disassembly O
of O
the O
holo B-protein_state
- O
EncFtnsH B-protein
decameric B-oligomeric_state
assembly O
. O
The O
entire O
charge B-evidence
state I-evidence
distribution O
of O
the O
Fe B-protein_state
- I-protein_state
loaded I-protein_state
holo B-protein_state
- O
EncFtnsH B-protein
assembly O
( O
green O
circles O
) O
was O
subject O
to O
collisional B-experimental_method
- I-experimental_method
induced I-experimental_method
dissociation I-experimental_method
( O
CID B-experimental_method
) O
by O
increasing O
the O
source O
cone O
voltage O
to O
200 O
V O
and O
the O
trap O
voltage O
to O
50 O
V O
. O
The O
resulting O
CID B-experimental_method
mass B-evidence
spectrum I-evidence
( O
A O
) O
revealed O
that O
dissociation O
of O
the O
holo B-protein_state
- O
EncFtnsH B-protein
decamer B-oligomeric_state
primarily O
occurred O
via O
ejection O
of O
a O
highly O
charged O
monomer B-oligomeric_state
( O
blue O
circles O
), O
leaving O
the O
O
stripped B-protein_state
O
complex O
( O
a O
9mer B-oligomeric_state
; O
118 O
. O
7 O
kDa O
; O
yellow O
circles O
). O
The O
mass O
of O
the O
ejected O
- O
monomer B-oligomeric_state
is O
consistent O
with O
apo B-protein_state
- O
EncFtnsH B-protein
( O
13 O
. O
2 O
kDa O
), O
suggesting O
unfolding O
of O
the O
monomer B-oligomeric_state
( O
and O
loss B-protein_state
of I-protein_state
Fe B-chemical
) O
occurs O
during O
ejection O
from O
the O
complex O
. O
This O
observation O
of O
asymmetric O
charge O
partitioning O
of O
the O
sub O
- O
complexes O
with O
respect O
to O
the O
mass O
of O
the O
complex O
is O
consistent O
with O
the O
' O
typical O
' O
pathway O
of O
dissociation O
of O
protein O
assemblies O
by O
CID B-experimental_method
, O
as O
described O
by O
. O
In O
addition O
, O
a O
third O
, O
lower O
abundance O
, O
charge B-evidence
state I-evidence
distribution O
is O
observed O
which O
overlaps O
the O
EncFtn B-protein
ejected O
monomer B-oligomeric_state
charge B-evidence
state I-evidence
distribution O
; O
this O
region O
of O
the O
spectrum O
is O
highlighted O
in O
( O
B O
). O
This O
distribution O
is O
consistent O
with O
an O
ejected O
EncFtnsH B-protein
dimer B-oligomeric_state
( O
orange O
circles O
). O
Interestingly O
, O
closer O
analysis O
of O
the O
individual O
charge B-evidence
state I-evidence
of O
this O
dimeric B-oligomeric_state
CID B-experimental_method
product O
shows O
that O
this O
sub O
- O
complex O
exists O
in O
three O
forms O
O
displaying O
mass O
consistent O
with O
an O
EncFtnsH B-protein
dimer B-oligomeric_state
binding O
0 O
, O
1 O
, O
and O
2 O
Fe B-chemical
ions O
. O
This O
is O
highlighted O
in O
( O
C O
), O
where O
the O
15 O
+ O
charge B-evidence
state I-evidence
of O
the O
EncFtnsH B-protein
dimer B-oligomeric_state
is O
shown O
; O
3 O
peaks B-evidence
are O
observed O
with O
m O
/ O
z O
1760 O
. O
5 O
, O
1763 O
. O
8 O
, O
and O
1767 O
. O
0 O
Th O
O
the O
lowest O
peak O
corresponds O
to O
neutral O
masses O
of O
26392 O
. O
5 O
Da O
[ O
predicted O
EncFtnsH B-protein
dimer B-oligomeric_state
, O
( O
C572H884N172O185S2 O
) O
2 O
; O
26388 O
. O
6 O
Da O
]. O
The O
two O
further O
peaks B-evidence
have O
a O
delta O
- O
mass O
of O
~+ O
50 O
Da O
, O
consistent O
with O
Fe B-chemical
binding O
. O
We O
interpret O
these O
observations O
as O
partial O
O
atypical O
O
CID B-experimental_method
fragmentation O
of O
the O
decameric B-oligomeric_state
complex O
O
i O
. O
e O
. O
fragmentation O
of O
the O
initial O
complex O
with O
retention O
of O
subunit O
and O
ligand O
interactions O
. O
We O
postulate O
the O
high O
stability O
of O
this O
iron B-protein_state
- I-protein_state
bound I-protein_state
dimer B-oligomeric_state
sub O
- O
complex O
is O
due O
to O
the O
metal B-chemical
coordination B-bond_interaction
at O
the O
dimer B-site
interface I-site
, O
increasing O
the O
strength O
of O
the O
dimer B-site
interface I-site
. O
Taken O
together O
, O
these O
observations O
support O
our O
findings O
that O
the O
topology O
of O
the O
decameric B-oligomeric_state
EncFtnsH B-protein
assembly O
is O
arranged O
as O
a O
pentamer B-oligomeric_state
of O
dimers B-oligomeric_state
, O
with O
two O
Fe B-chemical
ions O
at O
each O
dimer B-site
interface I-site
. O
Native B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
and O
ion B-experimental_method
mobility I-experimental_method
analysis I-experimental_method
of O
iron B-chemical
loading O
in O
EncFtnsH B-protein
. O
All O
spectra B-evidence
were O
acquired O
in O
100 O
mM O
ammonium O
acetate B-chemical
, O
pH O
8 O
. O
0 O
with O
a O
protein O
concentration O
of O
5 O
µM O
. O
( O
A O
) O
Native B-experimental_method
nanoelectrospray I-experimental_method
ionization I-experimental_method
( O
nESI B-experimental_method
) O
mass B-experimental_method
spectrometry I-experimental_method
of O
EncFtnsH B-protein
at O
varying O
iron B-chemical
concentrations O
. O
A1 O
, O
nESI B-experimental_method
spectrum B-evidence
of O
iron B-protein_state
- I-protein_state
free I-protein_state
EncFtnsH B-protein
displays O
a O
charge B-evidence
state I-evidence
distribution O
consistent O
with O
EncFtnsH B-protein
monomer B-oligomeric_state
( O
blue O
circles O
, O
13 O
, O
194 O
Da O
). O
Addition O
of O
100 O
µM O
( O
A2 O
) O
and O
300 O
µM O
( O
A3 O
) O
Fe2 B-chemical
+ I-chemical
results O
in O
the O
appearance O
of O
a O
second O
higher O
molecular B-evidence
weight I-evidence
charge B-evidence
state I-evidence
distribution O
consistent O
with O
a O
decameric B-oligomeric_state
assembly O
of O
EncFtnsH B-protein
( O
green O
circles O
, O
132 O
. O
6 O
kDa O
). O
( O
B O
) O
Ion B-experimental_method
mobility I-experimental_method
( I-experimental_method
IM I-experimental_method
)- I-experimental_method
MS I-experimental_method
of O
the O
iron B-protein_state
- I-protein_state
bound I-protein_state
holo B-protein_state
- O
EncFtnsH B-protein
decamer B-oligomeric_state
. O
Top O
, O
Peaks B-evidence
corresponding O
to O
the O
22 O
+ O
to O
26 O
+ O
charge B-evidence
states I-evidence
of O
a O
homo B-oligomeric_state
- I-oligomeric_state
decameric I-oligomeric_state
assembly O
of O
EncFtnsH B-protein
are O
observed O
( O
132 O
. O
6 O
kDa O
). O
Top O
Insert O
, O
Analysis O
of O
the O
24 O
+ O
charge B-evidence
state I-evidence
of O
the O
assembly O
at O
m O
/ O
z O
5528 O
. O
2 O
Th O
. O
The O
theoretical O
average O
m O
/ O
z O
of O
the O
24 O
+ O
charge B-evidence
state I-evidence
with O
no O
additional O
metals O
bound O
is O
marked O
by O
a O
red O
line O
( O
5498 O
. O
7 O
Th O
); O
the O
observed O
m O
/ O
z O
of O
the O
24 O
+ O
charge B-evidence
state I-evidence
indicates O
that O
the O
EncFtnsH B-protein
assembly O
binds O
between O
10 O
( O
green O
line O
, O
5521 O
. O
1 O
Th O
) O
and O
15 O
Fe B-chemical
ions O
( O
blue O
line O
, O
5532 O
. O
4 O
Th O
) O
per O
decamer B-oligomeric_state
. O
Bottom O
, O
The O
arrival B-evidence
time I-evidence
distributions I-evidence
( O
ion B-evidence
mobility I-evidence
data I-evidence
) O
of O
all O
ions O
in O
the O
EncFtnsH B-protein
charge B-evidence
state I-evidence
distribution O
displayed O
as O
a O
greyscale O
heat O
map O
( O
linear O
intensity O
scale O
). O
Bottom O
right O
, O
The O
arrival B-evidence
time I-evidence
distribution I-evidence
of O
the O
24 O
+ O
charge B-evidence
state I-evidence
( O
dashed O
blue O
box O
) O
has O
been O
extracted O
and O
plotted O
. O
The O
drift B-evidence
time I-evidence
for O
this O
ion O
is O
shown O
( O
ms O
), O
along O
with O
the O
calibrated O
collision B-evidence
cross I-evidence
section I-evidence
( O
CCS B-evidence
), O
Ω B-evidence
( O
nm2 O
). O
In O
order O
to O
confirm O
the O
assignment O
of O
the O
oligomeric O
state O
of O
EncFtnsH B-protein
and O
investigate O
further O
the O
Fe2 B-chemical
+- I-chemical
dependent O
assembly O
, O
we O
used O
native B-experimental_method
nano I-experimental_method
- I-experimental_method
electrospray I-experimental_method
ionization I-experimental_method
( O
nESI B-experimental_method
) O
and O
ion B-experimental_method
- I-experimental_method
mobility I-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
( O
IM B-experimental_method
- I-experimental_method
MS I-experimental_method
). O
As O
described O
above O
, O
by O
recombinant B-experimental_method
production I-experimental_method
of O
EncFtnsH B-protein
in O
minimal O
media O
we O
were O
able O
to O
limit O
the O
bioavailability O
of O
iron B-chemical
. O
Native B-experimental_method
MS I-experimental_method
analysis O
of O
EncFtnsH B-protein
produced O
in O
this O
way O
displayed O
a O
charge B-evidence
state I-evidence
distribution O
consistent O
with O
an O
EncFtnsH B-protein
monomer B-oligomeric_state
( O
blue O
circles O
, O
Figure O
7A1 O
) O
with O
an O
average O
neutral O
mass O
of O
13 O
, O
194 O
Da O
, O
in O
agreement O
with O
the O
predicted O
mass O
of O
the O
EncFtnsH B-protein
protein O
( O
13 O
, O
194 O
. O
53 O
Da O
). O
Titration B-experimental_method
with O
Fe2 B-chemical
+ I-chemical
directly O
before O
native B-experimental_method
MS I-experimental_method
analysis O
resulted O
in O
the O
appearance O
of O
a O
new O
charge B-evidence
state I-evidence
distribution O
, O
consistent O
with O
an O
EncFtnsH B-protein
decameric B-oligomeric_state
assembly O
(+ O
22 O
to O
+ O
26 O
; O
132 O
. O
65 O
kDa O
) O
( O
Figure O
7A2 O
/ O
3 O
). O
After O
instrument O
optimization O
, O
the O
mass O
resolving O
power O
achieved O
was O
sufficient O
to O
assign O
iron B-chemical
- O
loading O
in O
the O
complex O
to O
between O
10 O
and O
15 O
Fe B-chemical
ions O
per O
decamer B-oligomeric_state
( O
Figure O
7B O
, O
inset O
top O
right O
), O
consistent O
with O
the O
presence B-protein_state
of I-protein_state
10 O
irons B-chemical
in O
the O
FOC B-site
and O
the O
coordination B-bond_interaction
of O
iron B-chemical
in O
the O
Glu31 B-site
/ I-site
34 I-site
- I-site
site I-site
occupied O
by O
calcium B-chemical
in O
the O
crystal B-evidence
structure I-evidence
( O
Δmass B-evidence
observed O
~ O
0 O
. O
67 O
kDa O
). O
MS B-experimental_method
analysis O
of O
EncFtnsH B-protein
after O
addition O
of O
further O
Fe2 B-chemical
+ I-chemical
did O
not O
result O
in O
iron B-chemical
loading O
above O
this O
stoichiometry O
. O
Therefore O
, O
the O
extent O
of O
iron B-chemical
binding O
seen O
is O
limited O
to O
the O
FOC B-site
and O
Glu31 B-site
/ I-site
34 I-site
secondary I-site
metal I-site
binding I-site
site I-site
. O
These O
data O
suggest O
that O
the O
decameric B-oligomeric_state
assembly O
of O
EncFtnsH B-protein
does O
not O
accrue O
iron B-chemical
in O
the O
same O
manner O
as O
classical B-protein_state
ferritin B-protein_type
, O
which O
is O
able O
to O
sequester O
around O
4500 O
iron B-chemical
ions O
within O
its O
nanocage B-complex_assembly
. O
Ion B-experimental_method
mobility I-experimental_method
analysis I-experimental_method
of O
the O
EncFtnsH B-protein
decameric B-oligomeric_state
assembly O
, O
collected O
with O
minimal O
collisional O
activation O
, O
suggested O
that O
it O
consists O
of O
a O
single O
conformation O
with O
a O
collision B-evidence
cross I-evidence
section I-evidence
( O
CCS B-evidence
) O
of O
58 O
. O
2 O
nm2 O
( O
Figure O
7B O
). O
This O
observation O
is O
in O
agreement O
with O
the O
calculated O
CCS B-evidence
of O
58 O
. O
7 O
nm2derived O
from O
our O
crystal B-evidence
structure I-evidence
of O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
. O
By O
contrast O
, O
IM B-experimental_method
- I-experimental_method
MS I-experimental_method
measurements O
of O
the O
monomeric B-oligomeric_state
EncFtnsH B-protein
at O
pH B-protein_state
8 I-protein_state
. I-protein_state
0 I-protein_state
under O
the O
same O
instrumental O
conditions O
revealed O
that O
the O
metal B-protein_state
- I-protein_state
free I-protein_state
protein B-protein
monomer B-oligomeric_state
exists O
in O
a O
wide O
range O
of O
charge B-evidence
states I-evidence
(+ O
6 O
to O
+ O
16 O
) O
and O
adopts O
many O
conformations O
in O
the O
gas O
phase O
with O
collision O
cross O
sections O
ranging O
from O
12 O
nm2 O
to O
26 O
nm2 O
( O
Figure O
7 O
O
figure O
supplement O
1 O
). O
Thus O
, O
IM B-experimental_method
- I-experimental_method
MS I-experimental_method
studies O
highlight O
that O
higher O
order O
structure O
in O
EncFtnsH B-protein
is O
mediated O
/ O
stabilized O
by O
metal O
binding O
, O
an O
observation O
that O
is O
in O
agreement O
with O
our O
solution O
studies O
. O
Taken O
together O
, O
these O
results O
suggest O
that O
di O
- O
iron B-chemical
binding O
, O
forming O
the O
FOC B-site
in O
EncFtnsH B-protein
, O
is O
required O
to O
stabilize O
the O
4 B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
dimer B-site
interface I-site
, O
essentially O
reconstructing O
the O
classical B-protein_state
ferritin B-protein_type
- O
like O
fold O
; O
once O
stabilized O
, O
these O
dimers B-oligomeric_state
readily O
associate O
as O
pentamers O
, O
and O
the O
overall O
assembly O
adopts O
the O
decameric B-oligomeric_state
ring O
arrangement O
observed O
in O
the O
crystal B-evidence
structure I-evidence
. O
We O
subsequently O
performed O
gas O
phase O
disassembly O
of O
the O
decameric B-oligomeric_state
EncFtnsH B-protein
using O
collision B-experimental_method
- I-experimental_method
induced I-experimental_method
dissociation I-experimental_method
( O
CID B-experimental_method
) O
tandem B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
. O
Under O
the O
correct O
CID B-experimental_method
conditions O
, O
protein O
assemblies O
can O
dissociate O
with O
retention O
of O
subunit O
and O
ligand O
interactions O
, O
and O
thus O
provide O
structurally O
- O
informative O
evidence O
as O
to O
the O
topology O
of O
the O
original O
assembly O
; O
this O
has O
been O
termed O
O
atypical O
O
dissociation O
. O
For O
EncFtnsH B-protein
, O
this O
atypical O
dissociation O
pathway O
was O
clearly O
evident O
; O
CID B-experimental_method
of O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
resulted O
in O
the O
appearance O
of O
a O
dimeric B-oligomeric_state
EncFtnsH B-protein
subcomplex O
containing O
0 O
, O
1 O
, O
or O
2 O
iron B-chemical
ions O
( O
Figure O
7 O
O
figure O
supplement O
2 O
). O
In O
light O
of O
the O
crystal B-evidence
structure I-evidence
, O
this O
observation O
can O
be O
rationalized O
as O
dissociation O
of O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
by O
disruption O
of O
the O
non B-site
- I-site
FOC I-site
interface I-site
with O
at O
least O
partial O
retention O
of O
the O
FOC B-site
interface I-site
and O
the O
FOC B-site
- O
Fe B-chemical
. O
Thus O
, O
this O
observation O
supports O
our O
crystallographic O
assignment O
of O
the O
overall O
topology O
of O
the O
EncFtnsH B-protein
assembly O
as O
a O
pentameric B-oligomeric_state
assembly O
of O
dimers B-oligomeric_state
with O
two O
iron B-chemical
ions O
located O
at O
the O
FOC B-site
dimer I-site
interface I-site
. O
In O
addition O
, O
this O
analysis O
provides O
evidence O
that O
the O
overall O
architecture O
of O
the O
complex O
is O
consistent O
in O
the O
crystal B-evidence
, O
solution O
and O
gas O
phases O
. O
Ferroxidase B-protein_type
activity O
TEM B-experimental_method
visualization O
of O
iron B-protein_state
- I-protein_state
loaded I-protein_state
bacterial B-taxonomy_domain
nanocompartments B-complex_assembly
and O
ferritin B-protein_type
. O
Decameric B-oligomeric_state
EncFtnsH B-protein
, O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
and O
apoferritin B-protein_state
, O
at O
8 O
. O
5 O
µM O
, O
were O
mixed O
with O
147 O
µM O
, O
1 O
mM O
, O
1 O
mM O
and O
215 O
µM O
acidic O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
, O
respectively O
. O
Protein O
mixtures O
were O
incubated O
at O
room O
temperature O
for O
1 O
hr O
prior O
to O
TEM B-experimental_method
analysis O
with O
or O
without O
uranyl B-chemical
acetate I-chemical
stain O
. O
( O
A O
O
D O
) O
Unstained O
EncFtnsH B-protein
, O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
, O
apoferritin B-protein_state
loaded B-protein_state
with I-protein_state
Fe2 B-chemical
+, I-chemical
respectively O
, O
with O
35 O
, O
000 O
x O
magnification O
and O
scale O
bars O
indicate O
100 O
nm O
. O
( O
E O
) O
Protein O
- O
free O
sample O
as O
a O
control O
. O
( O
F O
O
I O
) O
Stained B-experimental_method
EncFtnsH B-protein
, O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
, O
apoferritin B-protein_state
loaded B-protein_state
with I-protein_state
Fe2 B-chemical
+, I-chemical
respectively O
, O
with O
140 O
, O
000 O
x O
magnification O
and O
scale O
bars O
indicate O
25 O
nm O
. O
Spectroscopic O
evidence O
for O
the O
ferroxidase B-protein_type
activity O
and O
comparison O
of O
iron B-chemical
loading O
capacity O
of O
apoferritin B-protein_state
, O
EncFtnsH B-protein
, O
encapsulin B-protein
, O
and O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
. O
( O
A O
) O
Apoferritin B-protein_state
( O
10 O
μM O
monomer B-oligomeric_state
concentration O
) O
and O
EncFtnsH B-protein
decamer B-oligomeric_state
fractions O
( O
20 O
μM O
monomer B-oligomeric_state
concentration O
, O
10 O
μM O
FOC B-site
concentration O
) O
were O
incubated O
with O
20 O
and O
100 O
μM O
iron B-chemical
( O
2 O
and O
10 O
times O
molar O
equivalent O
Fe2 B-chemical
+ I-chemical
per O
FOC B-site
) O
and O
progress B-evidence
curves I-evidence
of O
the O
oxidation O
of O
Fe2 B-chemical
+ I-chemical
to O
Fe3 B-chemical
+ I-chemical
at O
315 O
nm O
were O
recorded O
in O
a O
spectrophotometer O
. O
The O
background O
oxidation O
of O
iron B-chemical
at O
20 O
and O
100 O
μM O
in O
enzyme O
- O
free O
controls O
are O
shown O
for O
reference O
. O
( O
B O
) O
Encapsulin B-protein
and O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
complexes O
at O
10 O
μM O
asymmetric O
unit O
concentration O
were O
incubated B-experimental_method
with O
Fe2 B-chemical
+ I-chemical
at O
20 O
and O
100 O
μM O
and O
progress B-evidence
curves I-evidence
for O
iron B-chemical
oxidation O
at O
A315 O
were O
measured O
in O
a O
UV B-experimental_method
/ I-experimental_method
visible I-experimental_method
spectrophotometer I-experimental_method
. O
Enzyme O
free O
controls O
for O
background O
oxidation O
of O
Fe2 B-chemical
+ I-chemical
are O
shown O
for O
reference O
. O
( O
C O
) O
Histogram O
of O
the O
iron B-chemical
loading O
capacity O
per O
biological O
assembly O
of O
EncFtnsH B-protein
, O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
and O
apoferritin B-protein_state
. O
The O
results O
shown O
are O
for O
three O
technical O
replicates O
and O
represent O
the O
optimal O
iron B-chemical
loading O
by O
the O
complexes O
after O
three O
hours O
when O
incubated O
with O
Fe2 B-chemical
+. I-chemical
In O
light O
of O
the O
identification O
of O
an O
iron B-protein_state
- I-protein_state
loaded I-protein_state
FOC B-site
in O
the O
crystal B-evidence
structure I-evidence
of O
EncFtn B-protein
and O
our O
native B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
data O
, O
we O
performed O
ferroxidase B-experimental_method
and I-experimental_method
peroxidase I-experimental_method
assays I-experimental_method
to O
demonstrate O
the O
catalytic O
activity O
of O
this O
protein O
. O
In O
addition O
, O
we O
also O
assayed O
equine B-taxonomy_domain
apoferritin B-protein_state
, O
an O
example O
of O
a O
classical B-protein_state
ferritin B-protein_type
enzyme O
, O
as O
a O
positive O
control O
. O
Unlike O
the O
Dps B-protein_type
family I-protein_type
of O
ferritin B-protein_type
- I-protein_type
like I-protein_type
proteins I-protein_type
, O
EncFtn B-protein
showed O
no O
peroxidase O
activity O
when O
assayed O
with O
the O
substrate O
ortho B-chemical
- I-chemical
phenylenediamine I-chemical
. O
The O
ferroxidase B-protein_type
activity O
of O
EncFtnsH B-protein
was O
measured O
by O
recording O
the O
progress B-evidence
curve I-evidence
of O
Fe2 B-chemical
+ I-chemical
oxidation O
to O
Fe3 B-chemical
+ I-chemical
at O
315 O
nm O
after O
addition O
of O
20 O
and O
100 O
µM O
Fe2 B-chemical
+ I-chemical
( O
2 O
and O
10 O
times O
molar O
ratio O
Fe2 B-chemical
+/ I-chemical
FOC B-site
). O
In O
both O
experiments O
the O
rate O
of O
oxidation O
was O
faster O
than O
background O
oxidation O
of O
Fe2 B-chemical
+ I-chemical
by O
molecular O
oxygen B-chemical
, O
and O
was O
highest O
for O
100 O
µM O
Fe2 B-chemical
+ I-chemical
( O
Figure O
8A O
). O
These O
data O
show O
that O
recombinant O
EncFtnsH B-protein
acts O
as O
an O
active B-protein_state
ferroxidase B-protein_type
enzyme O
. O
When O
compared O
to O
apoferritin B-protein_state
, O
EncFtnsH B-protein
oxidized O
Fe2 B-chemical
+ I-chemical
at O
a O
slower O
rate O
and O
the O
reaction O
did O
not O
run O
to O
completion O
over O
the O
1800 O
s O
of O
the O
experiment O
. O
Addition O
of O
higher O
quantities O
of O
iron B-chemical
resulted O
in O
the O
formation O
of O
a O
yellow O
/ O
red O
precipitate O
at O
the O
end O
of O
the O
reaction O
. O
We O
also O
performed O
these O
assays O
on O
purified O
recombinant O
encapsulin B-protein
; O
which O
, O
when O
assayed O
alone O
, O
did O
not O
display O
ferroxidase B-protein_type
activity O
above O
background O
Fe2 B-chemical
+ I-chemical
oxidation O
( O
Figure O
8B O
). O
In O
contrast O
, O
complexes O
of O
the O
full B-protein_state
EncFtn B-protein
encapsulin B-protein
nanocompartment B-complex_assembly
( O
i O
. O
e O
. O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
protein O
complex O
) O
displayed O
ferroxidase B-protein_type
activity O
comparable O
to O
apoferritin B-protein_state
without O
the O
formation O
of O
precipitates O
( O
Figure O
8B O
). O
We O
attributed O
the O
precipitates O
observed O
in O
the O
EncFtnsH B-protein
ferroxidase B-experimental_method
assay I-experimental_method
to O
the O
production O
of O
insoluble O
Fe3 B-chemical
+ I-chemical
complexes O
, O
which O
led O
us O
to O
propose O
that O
EncFtn B-protein
does O
not O
directly O
store O
Fe3 B-chemical
+ I-chemical
in O
a O
mineral O
form O
. O
This O
observation O
agrees O
with O
native B-experimental_method
MS I-experimental_method
results O
, O
which O
indicates O
a O
maximum O
iron B-chemical
loading O
of O
10 O
O
15 O
iron B-chemical
ions O
per O
decameric B-oligomeric_state
EncFtn B-protein
; O
and O
the O
structure B-evidence
, O
which O
does O
not O
possess O
the O
enclosed O
iron B-site
- I-site
storage I-site
cavity I-site
characteristic O
of O
classical B-protein_state
ferritins B-protein_type
and O
Dps B-protein_type
family I-protein_type
proteins I-protein_type
that O
can O
directly O
accrue O
mineralized O
Fe3 B-chemical
+ I-chemical
within O
their O
nanocompartment B-complex_assembly
structures B-evidence
. O
To O
analyze O
the O
products O
of O
these O
reactions O
and O
determine O
whether O
the O
EncFtn B-protein
and O
encapsulin B-protein
were O
able O
to O
store O
iron B-chemical
in O
a O
mineral O
form O
, O
we O
performed O
TEM B-experimental_method
on O
the O
reaction O
mixtures O
from O
the O
ferroxidase B-experimental_method
assay I-experimental_method
. O
The O
EncFtnsH B-protein
reaction O
mixture O
showed O
the O
formation O
of O
large O
, O
irregular O
electron O
- O
dense O
precipitates O
( O
Figure O
8 O
O
figure O
supplement O
1A O
). O
A O
similar O
distribution O
of O
particles O
was O
observed O
after O
addition O
of O
Fe2 B-chemical
+ I-chemical
to O
the O
encapsulin B-protein
protein O
( O
Figure O
8 O
O
figure O
supplement O
1B O
). O
In O
contrast O
, O
addition O
of O
Fe2 B-chemical
+ I-chemical
to O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
resulted O
in O
small O
, O
highly O
regular O
, O
electron O
dense O
particles O
of O
approximately O
5 O
nm O
in O
diameter O
( O
Figure O
8 O
O
figure O
supplement O
1C O
); O
we O
interpret O
these O
observations O
as O
controlled O
mineralization O
of O
iron B-chemical
within O
the O
nanocompartment B-complex_assembly
. O
Addition O
of O
Fe2 B-chemical
+ I-chemical
to O
apoferritin B-protein_state
resulted O
in O
a O
mixture O
of O
large O
particles O
and O
small O
(~ O
2 O
nm O
) O
particles O
consistent O
with O
partial O
mineralization O
by O
the O
ferritin B-protein_type
and O
some O
background O
oxidation O
of O
the O
iron B-chemical
( O
Figure O
8 O
O
figure O
supplement O
1D O
). O
Negative B-experimental_method
stain I-experimental_method
TEM I-experimental_method
of O
these O
samples O
revealed O
that O
upon O
addition O
of O
iron B-chemical
, O
the O
EncFtnsH B-protein
protein O
showed O
significant O
aggregation O
( O
Figure O
8 O
O
figure O
supplement O
1F O
); O
while O
the O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
system O
, O
and O
apoferritin B-protein_state
are O
present O
as O
distinct O
nanocompartments B-complex_assembly
without O
significant O
protein O
aggregation O
( O
Figure O
8 O
O
figure O
supplement O
1G O
O
I O
). O
Iron B-chemical
storage O
in O
encapsulin B-protein
nanocompartments B-complex_assembly
The O
results O
of O
the O
ferroxidase B-experimental_method
assay I-experimental_method
and O
micrographs B-evidence
of O
the O
reaction O
products O
suggest O
that O
the O
oxidation O
and O
mineralization O
function O
of O
the O
classical B-protein_state
ferritins B-protein_type
are O
split O
between O
the O
EncFtn B-protein
and O
encapsulin B-protein
proteins O
, O
with O
the O
EncFtn B-protein
acting O
as O
a O
ferroxidase B-protein_type
and O
the O
encapsulin B-protein
shell B-structure_element
providing O
an O
environment O
and O
template O
for O
iron B-chemical
mineralization O
and O
storage O
. O
To O
investigate O
this O
further O
, O
we O
added O
Fe2 B-chemical
+ I-chemical
at O
various O
concentrations O
to O
samples O
of O
apo B-protein_state
- O
ferritin B-protein_type
, O
EncFtn B-protein
, O
isolated O
encapsulin B-protein
, O
and O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
protein O
complex O
, O
and O
subjected O
these O
samples O
to O
a O
ferrozine B-experimental_method
assay I-experimental_method
to O
quantify O
the O
amount O
of O
iron B-chemical
associated O
with O
the O
proteins O
after O
three O
hours O
of O
incubation O
. O
The O
maximum O
iron B-chemical
loading O
capacity O
of O
these O
systems O
was O
calculated O
as O
the O
quantity O
of O
iron B-chemical
per O
biological O
assembly O
( O
Figure O
8C O
). O
In O
this O
assay O
, O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
binds O
a O
maximum O
of O
around O
48 O
iron B-chemical
ions O
before O
excess O
iron B-chemical
induces O
protein O
precipitation O
. O
The O
encapsulin B-protein
shell B-structure_element
protein O
can O
sequester O
about O
2200 O
iron B-chemical
ions O
before O
significant O
protein O
loss O
occurs O
, O
and O
the O
reconstituted O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
sequestered O
about O
4150 O
iron B-chemical
ions O
. O
This O
latter O
result O
is O
significantly O
more O
than O
the O
apoferritin B-protein_state
used O
in O
our O
assay O
, O
which O
sequesters O
approximately O
570 O
iron B-chemical
ions O
in O
this O
assay O
( O
Figure O
8C O
, O
Table O
5 O
). O
Consideration O
of O
the O
functional O
oligomeric O
states O
of O
these O
proteins O
, O
where O
EncFtn B-protein
is O
a O
decamer B-oligomeric_state
and O
encapsulin B-protein
forms O
an O
icosahedral B-protein_state
cage B-complex_assembly
, O
and O
estimation O
of O
the O
iron B-chemical
loading O
capacity O
of O
these O
complexes O
gives O
insight O
into O
the O
role O
of O
the O
two O
proteins O
in O
iron B-chemical
storage O
and O
mineralization O
. O
EncFtn B-protein
decamers B-oligomeric_state
bind O
up O
to O
48 O
iron B-chemical
ions O
( O
Figure O
8C O
), O
which O
is O
significantly O
higher O
than O
the O
stoichiometry O
of O
fifteen O
metal O
ions O
visible O
in O
the O
FOC B-site
and O
E31 B-site
/ I-site
34 I-site
- I-site
site I-site
of O
the O
crystal B-evidence
structure I-evidence
of O
the O
EncFtnsH B-protein
decamer B-oligomeric_state
and O
our O
MS B-experimental_method
analysis O
. O
The O
discrepancy O
between O
these O
solution B-experimental_method
measurements I-experimental_method
and O
our O
MS B-experimental_method
analysis O
may O
indicate O
that O
there O
are O
additional O
metal B-site
- I-site
binding I-site
sites I-site
on O
the O
interior O
channel B-site
and O
exterior O
faces O
of O
the O
protein O
; O
this O
is O
consistent O
with O
our O
identification O
of O
a O
number O
of O
weak O
metal B-site
- I-site
binding I-site
sites I-site
at O
the O
surface O
of O
the O
protein O
in O
the O
crystal B-evidence
structure I-evidence
( O
Figure O
5D O
). O
These O
observations O
are O
consistent O
with O
hydrated O
Fe2 B-chemical
+ I-chemical
ions O
being O
channeled O
to O
the O
active B-site
site I-site
from O
the O
E31 B-site
/ I-site
34 I-site
- I-site
site I-site
and O
the O
subsequent O
exit O
of O
Fe3 B-chemical
+ I-chemical
products O
on O
the O
outer O
surface O
, O
as O
is O
seen O
in O
other O
ferritin B-protein_type
family O
proteins O
. O
While O
the O
isolated O
encapsulin B-protein
shell B-structure_element
does O
not O
display O
any O
ferroxidase B-protein_type
activity O
, O
it O
binds O
around O
2200 O
iron B-chemical
ions O
in O
our O
assay O
( O
Table O
5 O
). O
This O
implies O
that O
the O
shell B-structure_element
can O
bind O
a O
significant O
amount O
of O
iron B-chemical
on O
its O
outer O
and O
inner O
surfaces O
. O
While O
the O
maximum O
reported O
loading O
capacity O
of O
classical B-protein_state
ferritins B-protein_type
is O
approximately O
4500 O
iron B-chemical
ions O
, O
in O
our O
assay O
system O
we O
were O
only O
able O
to O
load O
apoferritin B-protein_state
with O
around O
570 O
iron B-chemical
ions O
. O
However O
, O
the O
recombinant O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
was O
able O
to O
bind O
over O
4100 O
iron B-chemical
ions O
in O
the O
same O
time O
period O
, O
over O
seven O
times O
the O
amount O
seen O
for O
the O
apoferritin B-protein_state
. O
We O
note O
we O
do O
not O
reach O
the O
experimental O
maximum O
iron B-chemical
loading O
for O
apoferritin B-protein_state
and O
therefore O
the O
total O
iron B-chemical
- O
loading O
capacity O
of O
our O
system O
may O
be O
significantly O
higher O
than O
in O
this O
experimental O
system O
. O
Taken O
together O
, O
our O
data O
show O
that O
EncFtn B-protein
can O
catalytically O
oxidize O
Fe2 B-chemical
+ I-chemical
to O
Fe3 B-chemical
+; I-chemical
however O
, O
iron B-chemical
binding O
in O
EncFtn B-protein
is O
limited O
to O
the O
FOC B-site
and O
several O
surface O
metal B-site
binding I-site
sites I-site
. O
In O
contrast O
, O
the O
encapsulin B-protein
protein O
displays O
no O
catalytic O
activity O
, O
but O
has O
the O
ability O
to O
bind O
a O
considerable O
amount O
of O
iron B-chemical
. O
Finally O
, O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
complex O
retains O
the O
catalytic O
activity O
of O
EncFtn B-protein
, O
and O
sequesters O
iron B-chemical
within O
the O
encapsulin B-protein
shell B-structure_element
at O
a O
higher O
level O
than O
the O
isolated O
components O
of O
the O
system O
, O
and O
at O
a O
significantly O
higher O
level O
than O
the O
classical B-protein_state
ferritins B-protein_type
. O
Furthermore O
, O
our O
recombinant O
nanocompartments B-complex_assembly
may O
not O
have O
the O
physiological O
subunit O
stoichiometry O
, O
and O
the O
iron B-chemical
- O
loading O
capacity O
of O
native B-protein_state
nanocompartments B-complex_assembly
is O
potentially O
much O
higher O
than O
the O
level O
we O
have O
observed O
. O
Mutagenesis B-experimental_method
of O
the O
EncFtnsHferroxidase B-protein
center B-site
Purification O
of O
recombinant O
R B-species
. I-species
rubrum I-species
EncFtnsH B-protein
FOC B-site
mutants B-protein_state
. O
Single O
mutants B-protein_state
E32A B-mutant
, O
E62A B-mutant
, O
and O
H65A B-mutant
of O
EncFtnsH B-protein
produced O
from O
E B-species
. I-species
coli I-species
BL21 I-species
( I-species
DE3 I-species
) I-species
cells O
grown O
in O
MM B-experimental_method
and O
MM B-experimental_method
supplemented O
with O
iron B-chemical
were O
subjected O
to O
Superdex O
200 O
size B-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
. O
( O
A O
) O
Gel B-evidence
- I-evidence
filtration I-evidence
chromatogram I-evidence
of O
the O
E32A B-mutant
mutant B-protein_state
form O
of O
EncFtnsH B-protein
resulted O
in O
an O
elution B-evidence
profile I-evidence
with O
a O
majority O
of O
the O
protein O
eluting O
as O
the O
decameric B-oligomeric_state
form O
of O
the O
protein O
and O
a O
small O
proportion O
of O
monomer B-oligomeric_state
. O
( O
B O
) O
Gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
chromatograhy I-experimental_method
of O
the O
E62A B-mutant
mutant B-protein_state
form O
of O
EncFtnsH B-protein
resulted O
in O
an O
elution B-evidence
profile I-evidence
with O
a O
single O
major O
decameric B-oligomeric_state
peak O
. O
( O
C O
) O
Gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
chromatography I-experimental_method
of O
the O
H65A B-mutant
mutant B-protein_state
form O
of O
EncFtnsH B-protein
resulted O
in O
a O
single O
peak O
corresponding O
to O
the O
protein O
monomer B-oligomeric_state
. O
To O
investigate O
the O
structural O
and O
biochemical O
role O
played O
by O
the O
metal B-site
binding I-site
residues I-site
in O
the O
di B-site
- I-site
iron I-site
FOC I-site
of O
EncFtnsH B-protein
we O
produced O
alanine B-experimental_method
mutations I-experimental_method
in O
each O
of O
these O
residues O
: O
Glu32 B-residue_name_number
, O
Glu62 B-residue_name_number
, O
and O
His65 B-residue_name_number
. O
These O
EncFtnsH B-protein
mutants B-protein_state
were O
produced O
in O
E B-species
. I-species
coli I-species
cells O
grown O
in O
MM B-experimental_method
, O
both O
in O
the O
absence B-protein_state
and O
presence B-protein_state
of I-protein_state
additional O
iron B-chemical
. O
The O
E32A B-mutant
and O
E62A B-mutant
mutants B-protein_state
eluted O
from O
SEC B-experimental_method
at O
a O
volume O
consistent O
with O
the O
decameric B-oligomeric_state
form O
of O
EncFtnsH B-protein
, O
with O
a O
small O
proportion O
of O
monomer B-oligomeric_state
; O
the O
H65A B-mutant
mutant B-protein_state
eluted O
at O
a O
volume O
consistent O
with O
the O
monomeric B-oligomeric_state
form O
of O
EncFtnsH B-protein
( O
Figure O
9 O
). O
For O
all O
of O
the O
mutants B-protein_state
studied O
, O
no O
change O
in O
oligomerization O
state O
was O
apparent O
upon O
addition O
of O
Fe2 B-chemical
+ I-chemical
in O
vitro O
. O
Native B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
of O
EncFtnsH B-protein
mutants B-protein_state
. O
All O
spectra B-evidence
were O
acquired O
in O
100 O
mM O
ammonium O
acetate B-chemical
, O
pH O
8 O
. O
0 O
with O
a O
protein O
concentration O
of O
5 O
µM O
. O
( O
A O
) O
Wild B-protein_state
- I-protein_state
type I-protein_state
EncFtnsH B-protein
in O
the O
absence B-protein_state
of I-protein_state
iron B-chemical
displays O
a O
charge B-evidence
state I-evidence
distribution I-evidence
consistent O
with O
a O
monomer B-oligomeric_state
( O
see O
also O
Figure O
8 O
). O
( O
B O
) O
E32A B-mutant
EncFtnsH B-protein
displays O
a O
charge B-evidence
states I-evidence
consistent O
with O
a O
decamer B-oligomeric_state
( O
green O
circles O
); O
a O
minor O
species O
, O
consistent O
with O
the O
monomer B-oligomeric_state
of O
E32A B-mutant
mutant B-protein_state
is O
also O
observed O
( O
blue O
circles O
). O
( O
C O
) O
E62A B-mutant
EncFtnsH B-protein
displays O
charge B-evidence
states I-evidence
consistent O
with O
a O
decamer B-oligomeric_state
( O
green O
circles O
). O
( O
D O
) O
H65A B-mutant
EncFtnsH B-protein
displays O
charge B-evidence
states I-evidence
consistent O
with O
both O
monomer B-oligomeric_state
( O
blue O
circles O
) O
and O
dimer B-oligomeric_state
( O
purple O
circles O
). O
In O
addition O
to O
SEC B-experimental_method
studies O
, O
native B-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
of O
the O
apo B-protein_state
- O
EncFtnsH B-protein
mutants B-protein_state
was O
performed O
and O
compared O
with O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
apo B-protein_state
- O
EncFtnsH B-protein
protein O
( O
Figure O
10 O
). O
As O
described O
above O
, O
the O
apo B-protein_state
- O
EncFtnsH B-protein
has O
a O
charge B-evidence
state I-evidence
distribution O
consistent O
with O
an O
unstructured B-protein_state
monomer B-oligomeric_state
, O
and O
decamer B-oligomeric_state
formation O
is O
only O
initiated O
upon O
addition O
of O
ferrous O
iron B-chemical
. O
Both O
the O
E32A B-mutant
mutant B-protein_state
and O
E62A B-mutant
mutant B-protein_state
displayed O
charge B-evidence
state I-evidence
distributions O
consistent O
with O
decamers B-oligomeric_state
, O
even O
in O
the O
absence B-protein_state
of I-protein_state
Fe2 B-chemical
+. I-chemical
This O
gas O
- O
phase O
observation O
is O
consistent O
with O
SEC B-experimental_method
measurements O
, O
which O
indicate O
both O
of O
these O
variants O
were O
also O
decamers B-oligomeric_state
in O
solution O
. O
Thus O
it O
seems O
that O
these O
mutations O
allow O
the O
decamer B-oligomeric_state
to O
form O
in O
the O
absence B-protein_state
of I-protein_state
iron B-chemical
in O
the O
FOC B-site
. O
In O
contrast O
to O
the O
glutamic B-residue_name
acid I-residue_name
mutants B-protein_state
, O
MS B-experimental_method
analysis O
of O
the O
H65A B-mutant
mutant B-protein_state
is O
similar O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
apo B-protein_state
- O
EncFtnsH B-protein
and O
is O
present O
as O
a O
monomer B-oligomeric_state
; O
interestingly O
a O
minor O
population O
of O
dimeric B-oligomeric_state
H65A B-mutant
was O
also O
observed O
. O
We O
propose O
that O
the O
observed O
differences O
in O
the O
oligomerization O
state O
of O
the O
E32A B-mutant
and O
E62A B-mutant
mutants B-protein_state
compared O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
are O
due O
to O
the O
changes O
in O
the O
electrostatic O
environment O
within O
the O
FOC B-site
. O
At O
neutral B-protein_state
pH I-protein_state
the O
glutamic B-residue_name
acid I-residue_name
residues O
are O
negatively O
charged O
, O
while O
the O
histidine B-residue_name
residues O
are O
predominantly O
in O
their O
uncharged O
state O
. O
In O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
EncFtnsH B-protein
this O
leads O
to O
electrostatic O
repulsion O
between O
subunits B-structure_element
in O
the O
absence B-protein_state
of I-protein_state
iron B-chemical
. O
Coordination B-bond_interaction
of O
Fe2 B-chemical
+ I-chemical
in O
this O
site O
stabilizes O
the O
dimer B-oligomeric_state
and O
reconstitutes O
the O
active B-protein_state
FOC B-site
. O
The O
geometric O
arrangement O
of O
Glu32 B-residue_name_number
and O
Glu62 B-residue_name_number
in O
the O
FOC B-site
explains O
their O
behavior O
in O
solution O
and O
the O
gas O
phase O
, O
where O
they O
both O
favor O
the O
formation O
of O
decamers B-oligomeric_state
due O
to O
the O
loss O
of O
a O
repulsive O
negative O
charge O
. O
The O
FOC B-site
in O
the O
H65A B-mutant
mutant B-protein_state
is O
destabilized O
through O
the O
loss B-protein_state
of I-protein_state
this O
metal B-site
coordinating I-site
residue I-site
and O
potential O
positive O
charge O
carrier O
, O
thus O
favoring O
the O
monomer B-oligomeric_state
in O
solution O
and O
the O
gas O
phase O
. O
Data B-evidence
collection I-evidence
and I-evidence
refinement I-evidence
statistics I-evidence
. O
WT B-protein_state
E32A B-mutant
E62A B-mutant
H65A B-mutant
Data O
collection O
Wavelength O
( O
Å O
) O
1 O
. O
74 O
1 O
. O
73 O
1 O
. O
73 O
1 O
. O
74 O
Resolution O
range O
( O
Å O
) O
49 O
. O
63 O
- O
2 O
. O
06 O
( O
2 O
. O
10 O
- O
2 O
. O
06 O
) O
48 O
. O
84 O
- O
2 O
. O
59 O
( O
2 O
. O
683 O
- O
2 O
. O
59 O
) O
48 O
. O
87 O
- O
2 O
. O
21 O
( O
2 O
. O
29 O
- O
2 O
. O
21 O
) O
48 O
. O
86 O
- O
2 O
. O
97 O
( O
3 O
. O
08 O
- O
2 O
. O
97 O
) O
Space O
group O
P O
1 O
21 O
1 O
P O
1 O
21 O
1 O
P O
1 O
21 O
1 O
P O
1 O
21 O
1 O
Unit O
cell O
( O
Å O
) O
a O
b O
c O
β O
(°) O
98 O
. O
18 O
120 O
. O
53 O
140 O
. O
30 O
95 O
. O
36 O
97 O
. O
78 O
120 O
. O
28 O
140 O
. O
53 O
95 O
. O
41 O
98 O
. O
09 O
120 O
. O
23 O
140 O
. O
36 O
95 O
. O
50 O
98 O
. O
03 O
120 O
. O
29 O
140 O
. O
43 O
95 O
. O
39 O
Total O
reflections O
1 O
, O
264 O
, O
922 O
( O
41 O
, O
360 O
) O
405 O
, O
488 O
( O
36 O
, O
186 O
) O
1 O
, O
069 O
, O
345 O
( O
95 O
, O
716 O
) O
323 O
, O
853 O
( O
32 O
, O
120 O
) O
Unique O
reflections O
197 O
, O
873 O
( O
8 O
, O
766 O
) O
100 O
, O
067 O
( O
9 O
, O
735 O
) O
162 O
, O
379 O
( O
15 O
, O
817 O
) O
66 O
, O
658 O
( O
6 O
, O
553 O
) O
Multiplicity O
6 O
. O
4 O
( O
4 O
. O
7 O
) O
4 O
. O
1 O
( O
3 O
. O
7 O
) O
6 O
. O
6 O
( O
6 O
. O
1 O
) O
4 O
. O
9 O
( O
4 O
. O
9 O
) O
Anomalous O
multiplicity O
3 O
. O
2 O
( O
2 O
. O
6 O
) O
N O
/ O
A O
N O
/ O
A O
N O
/ O
A O
Completeness O
(%) O
99 O
. O
2 O
( O
88 O
. O
6 O
) O
99 O
. O
0 O
( O
97 O
. O
0 O
) O
100 O
( O
97 O
. O
0 O
) O
100 O
( O
99 O
. O
0 O
) O
Anomalous O
completeness O
(%) O
96 O
. O
7 O
( O
77 O
. O
2 O
) O
N O
/ O
A O
N O
/ O
A O
N O
/ O
A O
Mean O
I O
/ O
sigma O
( O
I O
) O
10 O
. O
6 O
( O
1 O
. O
60 O
) O
8 O
. O
46 O
( O
1 O
. O
79 O
) O
13 O
. O
74 O
( O
1 O
. O
80 O
) O
8 O
. O
09 O
( O
1 O
. O
74 O
) O
Wilson O
B O
- O
factor O
26 O
. O
98 O
40 O
. O
10 O
33 O
. O
97 O
52 O
. O
20 O
Rmerge O
0 O
. O
123 O
( O
0 O
. O
790 O
) O
0 O
. O
171 O
( O
0 O
. O
792 O
) O
0 O
. O
0979 O
( O
1 O
. O
009 O
) O
0 O
. O
177 O
( O
0 O
. O
863 O
) O
Rmeas O
0 O
. O
147 O
( O
0 O
. O
973 O
) O
0 O
. O
196 O
( O
0 O
. O
923 O
) O
0 O
. O
1064 O
( O
1 O
. O
107 O
) O
0 O
. O
199 O
( O
0 O
. O
966 O
) O
CC1 O
/ O
2 O
0 O
. O
995 O
( O
0 O
. O
469 O
) O
0 O
. O
985 O
( O
0 O
. O
557 O
) O
0 O
. O
998 O
( O
0 O
. O
642 O
) O
0 O
. O
989 O
( O
0 O
. O
627 O
) O
CC O
* O
0 O
. O
999 O
( O
0 O
. O
846 O
) O
0 O
. O
996 O
( O
0 O
. O
846 O
) O
0 O
. O
999 O
( O
0 O
. O
884 O
) O
0 O
. O
997 O
( O
0 O
. O
878 O
) O
Image O
DOI O
10 O
. O
7488 O
/ O
ds O
/ O
1342 O
10 O
. O
7488 O
/ O
ds O
/ O
1419 O
10 O
. O
7488 O
/ O
ds O
/ O
1420 O
10 O
. O
7488 O
/ O
ds O
/ O
1421 O
Refinement O
Rwork O
0 O
. O
171 O
( O
0 O
. O
318 O
) O
0 O
. O
183 O
( O
0 O
. O
288 O
) O
0 O
. O
165 O
( O
0 O
. O
299 O
) O
0 O
. O
186 O
( O
0 O
. O
273 O
) O
Rfree O
0 O
. O
206 O
( O
0 O
. O
345 O
) O
0 O
. O
225 O
( O
0351 O
) O
0 O
. O
216 O
( O
0 O
. O
364 O
) O
0 O
. O
237 O
( O
0 O
. O
325 O
) O
Number O
of O
non O
- O
hydrogen O
atoms O
23 O
, O
222 O
22 O
, O
366 O
22 O
, O
691 O
22 O
, O
145 O
macromolecules O
22 O
, O
276 O
22 O
, O
019 O
21 O
, O
965 O
22 O
, O
066 O
ligands O
138 O
8 O
24 O
74 O
water B-chemical
808 O
339 O
702 O
5 O
Protein O
residues O
2 O
, O
703 O
2 O
, O
686 O
2 O
, O
675 O
2 O
, O
700 O
RMS O
( O
bonds O
) O
( O
Å O
) O
0 O
. O
012 O
0 O
. O
005 O
0 O
. O
011 O
0 O
. O
002 O
RMS O
( O
angles O
) O
(°) O
1 O
. O
26 O
0 O
. O
58 O
1 O
. O
02 O
0 O
. O
40 O
Ramachandran O
favored O
(%) O
100 O
99 O
100 O
99 O
Ramachandran O
allowed O
(%) O
0 O
1 O
0 O
1 O
Ramachandran O
outliers O
(%) O
0 O
0 O
0 O
0 O
Clash O
score O
1 O
. O
42 O
1 O
. O
42 O
1 O
. O
79 O
0 O
. O
97 O
Average O
B O
- O
factor O
( O
Å2 O
) O
33 O
. O
90 O
42 O
. O
31 O
41 O
. O
34 O
47 O
. O
68 O
macromolecules O
33 O
. O
80 O
42 O
. O
35 O
41 O
. O
31 O
47 O
. O
60 O
ligands O
40 O
. O
40 O
72 O
. O
80 O
65 O
. O
55 O
72 O
. O
34 O
solvent O
36 O
. O
20 O
38 O
. O
95 O
41 O
. O
46 O
33 O
. O
85 O
PDB O
ID O
5DA5 O
5L89 O
5L8B O
5L8G O
Iron B-chemical
loading O
capacity O
of O
EncFtn B-protein
, O
encapsulin B-protein
and O
ferritin B-protein_type
. O
Protein O
samples O
( O
at O
8 O
. O
5 O
µM O
) O
including O
decameric B-oligomeric_state
EncFtnsH B-protein
, O
encapsulin B-protein
, O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
and O
apoferritin B-protein_state
were O
mixed O
with O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
( O
in O
0 O
. O
1 O
% O
( O
v O
/ O
v O
) O
HCl B-chemical
) O
of O
different O
concentrations O
in O
50 O
mM O
Tris O
- O
HCl O
( O
pH O
8 O
. O
0 O
), O
150 O
mM O
NaCl B-chemical
buffer O
at O
room O
temperature O
for O
3 O
hrs O
in O
the O
air O
. O
Protein O
- O
Fe B-chemical
mixtures O
were O
centrifuged O
at O
13 O
, O
000 O
x O
g O
to O
remove O
precipitated O
material O
and O
desalted O
prior O
to O
the O
Fe B-chemical
and O
protein O
content O
analysis O
by O
ferrozine B-experimental_method
assay I-experimental_method
and O
BCA B-experimental_method
microplate I-experimental_method
assay I-experimental_method
, O
respectively O
. O
Fe B-chemical
to O
protein O
ratio O
was O
calculated O
to O
indicate O
the O
Fe B-chemical
binding O
capacity O
of O
the O
protein O
. O
Protein O
stability O
was O
compromised O
at O
high O
iron B-chemical
concentrations O
; O
therefore O
, O
the O
highest O
iron B-chemical
loading O
with O
the O
least O
protein O
precipitation O
was O
used O
to O
derive O
the O
maximum O
iron B-chemical
loading O
capacity O
per O
biological O
assembly O
( O
underlined O
and O
highlighted O
in O
bold O
). O
The O
biological O
unit O
assemblies O
are O
a O
decamer B-oligomeric_state
for O
EncFtnsH B-protein
, O
a O
60mer B-oligomeric_state
for O
encapsulin B-protein
, O
a O
60mer B-oligomeric_state
of O
encapsulin B-protein
loaded B-protein_state
with I-protein_state
12 O
copies O
of O
decameric B-oligomeric_state
EncFtn B-protein
in O
the O
complex O
, O
and O
24mer B-oligomeric_state
for O
horse B-taxonomy_domain
spleen O
apoferritin B-protein_state
. O
Errors O
are O
quoted O
as O
the O
standard O
deviation O
of O
three O
technical O
repeats O
in O
both O
the O
ferrozine B-experimental_method
and I-experimental_method
BCA I-experimental_method
microplate I-experimental_method
assays I-experimental_method
. O
The O
proteins O
used O
in O
Fe B-chemical
loading O
experiment O
came O
from O
a O
single O
preparation O
. O
Protein O
sample O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
loading O
( O
µM O
) O
Fe B-chemical
detected O
by O
ferrozine B-experimental_method
assay I-experimental_method
( O
µM O
) O
Protein O
detected O
by O
BCA B-experimental_method
microplate I-experimental_method
assay I-experimental_method
( O
µM O
) O
Fe B-chemical
/ O
monomeric O
protein O
Maximum O
Fe B-chemical
loading O
per O
biological O
assembly O
unit O
8 O
. O
46 O
µM O
EncFtnsH B-protein
- O
10mer B-oligomeric_state
0 O
4 O
. O
73 O
± O
2 O
. O
32 O
5 O
. O
26 O
± O
0 O
. O
64 O
0 O
. O
90 O
± O
0 O
. O
44 O
39 O
. O
9 O
9 O
. O
93 O
± O
1 O
. O
20 O
5 O
. O
36 O
± O
0 O
. O
69 O
1 O
. O
85 O
± O
0 O
. O
22 O
84 O
17 O
. O
99 O
± O
2 O
. O
01 O
4 O
. O
96 O
± O
0 O
. O
04 O
3 O
. O
63 O
± O
0 O
. O
41 O
147 O
21 O
. O
09 O
± O
1 O
. O
94 O
4 O
. O
44 O
± O
0 O
. O
21 O
4 O
. O
75 O
± O
0 O
. O
44 O
48 O
± O
4 O
224 O
28 O
. O
68 O
± O
0 O
. O
30 O
3 O
. O
73 O
± O
0 O
. O
53 O
7 O
. O
68 O
± O
0 O
. O
08 O
301 O
11 O
. O
27 O
± O
1 O
. O
10 O
2 O
. O
50 O
± O
0 O
. O
05 O
4 O
. O
51 O
± O
0 O
. O
44 O
8 O
. O
50 O
µM O
Encapsulin B-protein
0 O
- O
1 O
. O
02 O
± O
0 O
. O
54 O
8 O
. O
63 O
± O
0 O
. O
17 O
- O
0 O
. O
12 O
± O
0 O
. O
06 O
224 O
62 O
. O
24 O
± O
2 O
. O
49 O
10 O
. O
01 O
± O
0 O
. O
58 O
6 O
. O
22 O
± O
0 O
. O
35 O
301 O
67 O
. O
94 O
± O
3 O
. O
15 O
8 O
. O
69 O
± O
0 O
. O
42 O
7 O
. O
81 O
± O
0 O
. O
36 O
450 O
107 O
. O
96 O
± O
8 O
. O
88 O
8 O
. O
50 O
± O
0 O
. O
69 O
12 O
. O
71 O
± O
1 O
. O
05 O
700 O
97 O
. O
51 O
± O
3 O
. O
19 O
7 O
. O
26 O
± O
0 O
. O
20 O
13 O
. O
44 O
± O
0 O
. O
44 O
1000 O
308 O
. O
63 O
± O
2 O
. O
06 O
8 O
. O
42 O
± O
0 O
. O
34 O
36 O
. O
66 O
± O
0 O
. O
24 O
2199 O
± O
15 O
1500 O
57 O
. O
09 O
± O
0 O
. O
90 O
1 O
. O
44 O
± O
0 O
. O
21 O
39 O
. O
77 O
± O
0 O
. O
62 O
2000 O
9 O
. O
2 O
± O
1 O
. O
16 O
0 O
. O
21 O
± O
0 O
. O
14 O
44 O
. O
73 O
± O
5 O
. O
63 O
8 O
. O
70 O
µM O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
0 O
3 O
. O
31 O
± O
1 O
. O
57 O
6 O
. O
85 O
± O
0 O
. O
07 O
0 O
. O
48 O
± O
0 O
. O
23 O
224 O
116 O
. O
27 O
± O
3 O
. O
74 O
7 O
. O
63 O
± O
0 O
. O
12 O
15 O
. O
25 O
± O
0 O
. O
49 O
301 O
132 O
. O
86 O
± O
4 O
. O
03 O
6 O
. O
66 O
± O
0 O
. O
31 O
19 O
. O
96 O
± O
0 O
. O
61 O
450 O
220 O
. O
57 O
± O
27 O
. O
33 O
6 O
. O
12 O
± O
1 O
. O
07 O
36 O
. O
06 O
± O
4 O
. O
47 O
700 O
344 O
. O
03 O
± O
40 O
. O
38 O
6 O
. O
94 O
± O
0 O
. O
17 O
49 O
. O
58 O
± O
5 O
. O
82 O
1000 O
496 O
. O
00 O
± O
38 O
. O
48 O
7 O
. O
19 O
± O
0 O
. O
08 O
68 O
. O
94 O
± O
5 O
. O
35 O
4137 O
± O
321 O
1500 O
569 O
. O
98 O
± O
73 O
. O
63 O
5 O
. O
73 O
± O
0 O
. O
03 O
99 O
. O
44 O
± O
12 O
. O
84 O
2000 O
584 O
. O
30 O
± O
28 O
. O
33 O
4 O
. O
88 O
± O
0 O
. O
22 O
119 O
. O
62 O
± O
5 O
. O
80 O
8 O
. O
50 O
µM O
Apoferritin B-protein_state
0 O
3 O
. O
95 O
± O
2 O
. O
26 O
9 O
. O
37 O
± O
0 O
. O
24 O
0 O
. O
42 O
± O
0 O
. O
25 O
42 O
. O
5 O
10 O
. O
27 O
± O
1 O
. O
12 O
8 O
. O
27 O
± O
0 O
. O
30 O
1 O
. O
24 O
± O
0 O
. O
18 O
212 O
. O
5 O
44 O
. O
48 O
± O
2 O
. O
76 O
7 O
. O
85 O
± O
0 O
. O
77 O
5 O
. O
67 O
± O
0 O
. O
83 O
637 O
. O
5 O
160 O
. O
93 O
± O
4 O
. O
27 O
6 O
. O
76 O
± O
0 O
. O
81 O
23 O
. O
79 O
± O
3 O
. O
12 O
571 O
± O
75 O
1275 O
114 O
. O
92 O
± O
3 O
. O
17 O
3 O
. O
84 O
± O
0 O
. O
30 O
29 O
. O
91 O
± O
2 O
. O
95 O
1700 O
91 O
. O
40 O
± O
3 O
. O
37 O
3 O
. O
14 O
± O
0 O
. O
35 O
29 O
. O
13 O
± O
3 O
. O
86 O
To O
understand O
the O
impact O
of O
the O
mutants B-protein_state
on O
the O
organization O
and O
metal O
binding O
of O
the O
FOC B-site
, O
we O
determined O
the O
X B-evidence
- I-evidence
ray I-evidence
crystal I-evidence
structures I-evidence
of O
each O
of O
the O
EncFtnsH B-protein
mutants B-protein_state
( O
See O
Table O
4 O
for O
data O
collection O
and O
refinement O
statistics O
). O
The O
crystal O
packing O
of O
all O
of O
the O
mutants B-protein_state
in O
this O
study O
is O
essentially O
isomorphous O
to O
the O
EncFtnsH B-protein
structure B-evidence
. O
All O
of O
the O
mutants B-protein_state
display O
the O
same O
decameric B-oligomeric_state
arrangement O
in O
the O
crystals B-evidence
as O
the O
EncFtnsH B-protein
structure B-evidence
, O
and O
the O
monomers B-oligomeric_state
superimpose B-experimental_method
with O
an O
average O
RMSDCα B-evidence
of O
less O
than O
0 O
. O
2 O
Å O
. O
FOC B-site
dimer B-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
E32A I-mutant
mutant B-protein_state
. O
( O
A O
) O
Wall O
- O
eyed O
stereo O
view O
of O
the O
metal B-site
- I-site
binding I-site
dimerization I-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
E32A I-mutant
. O
Protein O
residues O
are O
shown O
as O
sticks O
with O
blue O
and O
green O
carbons O
for O
the O
different O
subunits B-structure_element
. O
The O
2mFo B-evidence
- I-evidence
DFc I-evidence
electron I-evidence
density I-evidence
map I-evidence
is O
shown O
as O
a O
blue O
mesh O
contoured O
at O
1 O
. O
5 O
σ O
. O
( O
B O
) O
Views O
of O
the O
FOC B-site
of O
the O
EncFtnsH B-mutant
- I-mutant
E32Amutant I-mutant
. O
FOC B-site
dimer I-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
E62A I-mutant
mutant B-protein_state
. O
( O
A O
) O
Wall O
- O
eyed O
stereo O
view O
of O
the O
metal B-site
- I-site
binding I-site
dimerization I-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
E62A I-mutant
. O
The O
single O
coordinated O
calcium B-chemical
ion O
is O
shown O
as O
a O
grey O
sphere O
. O
( O
B O
) O
Views O
of O
the O
FOC B-site
of O
the O
EncFtnsH B-mutant
- I-mutant
E62A I-mutant
mutant B-protein_state
. O
FOC B-site
dimer I-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
H65A I-mutant
mutant B-protein_state
. O
( O
A O
) O
Wall O
- O
eyed O
stereo O
view O
of O
the O
metal B-site
- I-site
binding I-site
dimerization I-site
interface I-site
of O
EncFtnsH B-mutant
- I-mutant
H65A I-mutant
. O
The O
coordinated O
calcium B-chemical
ions O
are O
shown O
as O
a O
grey O
spheres O
with O
coordination B-bond_interaction
distances O
in O
the O
FOC B-site
highlighted O
with O
yellow O
dashed O
lines O
. O
( O
B O
) O
Views O
of O
the O
FOC B-site
of O
the O
EncFtnsH B-mutant
- I-mutant
H65A I-mutant
mutant B-protein_state
. O
Comparison O
of O
the O
EncFtnsH B-protein
FOC B-site
mutants B-protein_state
vs O
wild B-protein_state
type I-protein_state
. O
The O
structures B-evidence
of O
the O
three O
EncFtnsH B-protein
mutants B-protein_state
were O
all O
determined O
by O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
. O
The O
E32A B-mutant
, O
E62A B-mutant
and O
H65A B-mutant
mutants B-protein_state
were O
crystallized B-experimental_method
in O
identical O
conditions O
to O
the O
wild B-protein_state
type I-protein_state
. O
EncFtnsH B-protein
structure B-evidence
and O
were O
essentially O
isomorphous O
in O
terms O
of O
their O
unit O
cell O
dimensions O
. O
The O
FOC B-site
residues O
of O
the O
mutants B-protein_state
and O
native B-protein_state
EncFtnsH B-protein
structures B-evidence
are O
shown O
as O
sticks O
with O
coordinated B-bond_interaction
Fe2 B-chemical
+ I-chemical
as O
orange O
and O
Ca2 B-chemical
+ I-chemical
as O
grey O
spheres O
and O
are O
colored O
as O
follows O
: O
wild B-protein_state
type I-protein_state
, O
grey O
; O
E32A B-mutant
, O
pink O
; O
E62A B-mutant
, O
green O
; O
H65A B-mutant
, O
blue O
. O
Of O
the O
mutants B-protein_state
, O
only O
H65A B-mutant
has O
any O
coordinated B-bond_interaction
metal O
ions O
, O
which O
appear O
to O
be O
calcium B-chemical
ions O
from O
the O
crystallization O
condition O
. O
The O
overall O
organization O
of O
FOC B-site
residues O
is O
retained O
in O
the O
mutants B-protein_state
, O
with O
almost O
no O
backbone O
movements O
. O
Significant O
differences O
center O
around O
Tyr39 B-residue_name_number
, O
which O
moves O
to O
coordinate B-bond_interaction
the O
bound B-protein_state
calcium B-chemical
ions O
in O
the O
H65A B-mutant
mutant B-protein_state
; O
and O
Glu32 B-residue_name_number
, O
which O
moves O
away O
from O
the O
metal O
ions O
in O
this O
structure B-evidence
. O
Close O
inspection O
of O
the O
region O
of O
the O
protein O
around O
the O
FOC B-site
in O
each O
of O
the O
mutants B-protein_state
highlights O
their O
effect O
on O
metal O
binding O
( O
Figure O
11 O
and O
Figure O
11 O
O
figure O
supplement O
1 O
O
3 O
). O
In O
the O
E32A B-mutant
mutant B-protein_state
the O
position O
of O
the O
side O
chains O
of O
the O
remaining O
iron B-site
coordinating I-site
residues I-site
in O
the O
FOC B-site
is O
essentially O
unchanged O
, O
but O
the O
absence B-protein_state
of I-protein_state
the O
axial O
- O
metal O
coordinating B-bond_interaction
ligand O
provided O
by O
the O
Glu32 B-residue_name_number
side O
chain O
abrogates B-protein_state
metal I-protein_state
binding I-protein_state
in O
this O
site O
. O
The O
Glu31 B-site
/ I-site
34 I-site
- I-site
site I-site
also O
lacks B-protein_state
metal B-chemical
, O
with O
the O
side O
chain O
of O
Glu31 B-residue_name_number
rotated O
by O
180 O
° O
at O
the O
Cβ O
in O
the O
absence B-protein_state
of I-protein_state
metal B-chemical
( O
Figure O
11 O
O
figure O
supplement O
1 O
). O
The O
E62A B-mutant
mutant B-protein_state
has O
a O
similar O
effect O
on O
the O
FOC B-site
to O
the O
E32A B-mutant
mutant B-protein_state
, O
however O
the O
entry B-site
site I-site
still O
has O
a O
calcium B-chemical
ion O
coordinated B-bond_interaction
between O
residues O
Glu31 B-residue_name_number
and O
Glu34 B-residue_name_number
( O
Figure O
11 O
O
figure O
supplement O
2 O
). O
The O
H65A B-mutant
mutant B-protein_state
diverges O
significantly O
from O
the O
wild B-protein_state
type I-protein_state
in O
the O
position O
of O
the O
residues O
Glu32 B-residue_name_number
and O
Tyr39 B-residue_name_number
in O
the O
FOC B-site
. O
E32 B-residue_name_number
appears O
in O
either O
the O
original O
orientation O
as O
the O
wild B-protein_state
type I-protein_state
and O
coordinates B-bond_interaction
Ca2 B-chemical
+ I-chemical
in O
this O
position O
, O
or O
it O
is O
flipped O
by O
180 O
° O
at O
the O
Cβ O
, O
moving O
away O
from O
the O
coordinated B-bond_interaction
calcium B-chemical
ion O
in O
the O
FOC B-site
. O
Tyr39 B-residue_name_number
moves O
closer O
to O
Ca2 B-chemical
+ I-chemical
compared O
to O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
and O
coordinates B-bond_interaction
the O
calcium B-chemical
ion O
( O
Figure O
11 O
O
figure O
supplement O
3 O
). O
A O
single O
calcium B-chemical
ion O
is O
present O
in O
the O
entry B-site
site I-site
of O
this O
mutant B-protein_state
; O
however O
, O
Glu31 B-residue_name_number
of O
one O
chain O
is O
rotated O
away O
from O
the O
metal O
ion O
and O
is O
not O
involved O
in O
coordination B-bond_interaction
. O
Taken O
together O
the O
results O
of O
our O
data O
show O
that O
these O
changes O
to O
the O
FOC B-site
of O
EncFtn B-protein
still O
permit O
the O
formation O
of O
the O
decameric B-oligomeric_state
form O
of O
the O
protein O
. O
While O
the O
proteins O
all O
appear O
decameric B-oligomeric_state
in O
crystals B-evidence
, O
their O
solution O
and O
gas O
- O
phase O
behavior O
differs O
considerably O
and O
the O
mutants B-protein_state
no O
longer O
show O
metal O
- O
dependent O
oligomerization O
. O
These O
results O
highlight O
the O
importance O
of O
metal B-chemical
coordination B-bond_interaction
in O
the O
FOC B-site
for O
the O
stability O
and O
assembly O
of O
the O
EncFtn B-protein
protein O
. O
Progress B-evidence
curves I-evidence
recording O
ferroxidase B-protein_type
activity O
of O
EncFtnsH B-protein
mutants B-protein_state
. O
20 O
µM O
wild B-protein_state
- I-protein_state
type I-protein_state
EncFtnsH B-protein
, O
E32A B-mutant
, O
E62A B-mutant
and O
H65A B-mutant
mutants B-protein_state
were O
mixed O
with O
20 O
µM O
or O
100 O
µM O
acidic O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
, O
respectively O
. O
Absorbance O
at O
315 O
nm O
was O
recorded O
for O
1800 O
s O
at O
25 O
° O
C O
as O
an O
indication O
of O
Fe3 B-chemical
+ I-chemical
formation O
. O
Protein O
free O
samples O
( O
dashed O
and O
dotted O
lines O
) O
were O
measured O
for O
Fe2 B-chemical
+ I-chemical
background O
oxidation O
as O
controls O
. O
Relative O
ferroxidase B-protein_type
activity O
of O
EncFtnsH B-protein
mutants B-protein_state
. O
EncFtnsH B-protein
, O
and O
the O
mutant B-protein_state
forms O
E32A B-mutant
, O
E62A B-mutant
and O
H65A B-mutant
, O
each O
at O
20 O
µM O
, O
were O
mixed O
with O
100 O
µM O
acidic O
Fe B-chemical
( I-chemical
NH4 I-chemical
) I-chemical
2 I-chemical
( I-chemical
SO4 I-chemical
) I-chemical
2 I-chemical
. O
Ferroxidase B-protein_type
activity O
of O
the O
mutant B-protein_state
forms O
is O
determined O
by O
measuring B-experimental_method
the I-experimental_method
absorbance I-experimental_method
at I-experimental_method
315 I-experimental_method
nm I-experimental_method
for O
1800 O
s O
at O
25 O
° O
C O
as O
an O
indication O
of O
Fe3 B-chemical
+ I-chemical
formation O
. O
The O
relative O
ferroxidase B-protein_type
activity O
of O
mutants B-protein_state
is O
plotted O
as O
a O
proportion O
of O
the O
activity O
of O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
protein O
using O
the O
endpoint O
measurement B-experimental_method
of I-experimental_method
A315 I-experimental_method
. O
The O
FOC B-site
mutants B-protein_state
showed O
reduced O
ferroxidase B-protein_type
activity O
to O
varied O
extents O
, O
among O
which O
E62A B-mutant
significantly O
abrogated O
the O
ferroxidase B-protein_type
activity O
. O
To O
address O
the O
question O
of O
how O
mutagenesis B-experimental_method
of O
the O
iron B-site
coordinating I-site
residues I-site
affects O
the O
enzymatic O
activity O
of O
the O
EncFtnsH B-protein
protein O
we O
recorded O
progress B-evidence
curves I-evidence
for O
the O
oxidation O
of O
Fe2 B-chemical
+ I-chemical
to O
Fe3 B-chemical
+ I-chemical
by O
the O
different O
mutants B-protein_state
as O
before O
. O
Mutagenesis B-experimental_method
of O
E32A B-mutant
and O
H65A B-mutant
reduces O
the O
activity O
of O
EncFtnsH B-protein
by O
about O
40 O
%- O
55 O
%; O
the O
E62A B-mutant
mutant B-protein_state
completely O
abrogates O
activity O
, O
presumably O
through O
the O
loss B-protein_state
of I-protein_state
the O
bridging O
coordination B-bond_interaction
for O
the O
formation O
of O
the O
di B-site
- I-site
nuclear I-site
iron I-site
center I-site
of O
the O
FOC B-site
( O
Figure O
12 O
). O
Collectively O
, O
the O
effect O
of O
mutating B-experimental_method
these O
residues O
in O
the O
FOC B-site
confirms O
the O
importance O
of O
the O
iron B-site
coordinating I-site
residues I-site
for O
the O
ferroxidase B-protein_type
activity O
of O
the O
EncFtnsH B-protein
protein O
. O
Phylogenetic B-evidence
tree I-evidence
of O
ferritin B-protein_type
family O
proteins O
. O
The O
tree O
was O
built O
using O
the O
Neighbor B-experimental_method
- I-experimental_method
Joining I-experimental_method
method I-experimental_method
based O
on O
step B-experimental_method
- I-experimental_method
wise I-experimental_method
amino I-experimental_method
acid I-experimental_method
sequence I-experimental_method
alignment I-experimental_method
of O
the O
four B-structure_element
- I-structure_element
helical I-structure_element
bundle I-structure_element
portions O
of O
ferritin B-protein_type
family O
proteins O
( O
Supplementary O
file O
1 O
). O
The O
evolutionary B-evidence
distances I-evidence
were O
computed O
using O
the O
p B-experimental_method
- I-experimental_method
distance I-experimental_method
method I-experimental_method
and O
are O
in O
the O
units O
of O
the O
number O
of O
amino O
acid O
differences O
per O
site O
. O
Our O
study O
reports O
on O
a O
new O
class O
of O
ferritin B-protein_type
- O
like O
proteins O
( O
EncFtn B-protein
), O
which O
are O
associated O
with O
bacterial B-taxonomy_domain
encapsulin B-protein
nanocompartments B-complex_assembly
( O
Enc B-protein
). O
By O
studying O
the O
EncFtn B-protein
from O
R B-species
. I-species
rubrum I-species
we O
demonstrate O
that O
iron B-chemical
binding O
results O
in O
assembly O
of O
EncFtn B-protein
decamers B-oligomeric_state
, O
which O
display O
a O
unique O
annular O
architecture O
. O
Despite O
a O
radically O
different O
quaternary O
structure O
to O
the O
classical B-protein_state
ferritins B-protein_type
, O
the O
four B-structure_element
- I-structure_element
helical I-structure_element
bundle I-structure_element
scaffold I-structure_element
and O
FOC B-site
of O
EncFtnsH B-protein
are O
strikingly O
similar O
to O
ferritin B-protein_type
( O
Figure O
6A O
). O
A O
sequence B-experimental_method
- I-experimental_method
based I-experimental_method
phylogenetic I-experimental_method
tree I-experimental_method
for O
proteins O
in O
the O
ferritin B-protein_type
family O
was O
constructed O
; O
in O
addition O
to O
the O
classical B-protein_state
ferritins B-protein_type
, O
bacterioferritins B-protein_type
and O
Dps B-protein_type
proteins O
, O
our O
analysis O
included O
the O
encapsulin B-protein_type
- I-protein_type
associated I-protein_type
ferritin I-protein_type
- I-protein_type
like I-protein_type
proteins I-protein_type
( O
EncFtns B-protein_type
) O
and O
a O
group O
related O
to O
these O
, O
but O
lacking O
the O
encapsulin B-protein
sequence O
( O
Non B-protein_type
- I-protein_type
EncFtn I-protein_type
). O
The O
analysis O
revealed O
that O
the O
EncFtn B-protein
and O
Non B-protein_type
- I-protein_type
EncFtn I-protein_type
proteins O
form O
groups O
distinct O
from O
the O
other O
clearly O
delineated O
groups O
of O
ferritins B-protein_type
, O
and O
represent O
outliers O
in O
the O
tree O
( O
Figure O
13 O
). O
While O
it O
is O
difficult O
to O
infer O
ancestral O
lineages O
in O
protein O
families O
, O
the O
similarity O
seen O
in O
the O
active B-site
site I-site
scaffold I-site
of O
these O
proteins O
highlights O
a O
shared O
evolutionary O
relationship O
between O
EncFtn B-protein_type
proteins O
and O
other O
members O
of O
the O
ferritin B-protein_type
superfamily O
that O
has O
been O
noted O
in O
previous O
studies O
(; O
). O
From O
this O
analysis O
, O
we O
propose O
that O
the O
four B-structure_element
- I-structure_element
helical I-structure_element
fold I-structure_element
of O
the O
classical B-protein_state
ferritins B-protein_type
may O
have O
arisen O
through O
gene O
duplication O
of O
an O
ancestor O
of O
EncFtn B-protein
. O
This O
gene O
duplication O
would O
result O
in O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
one O
EncFtn B-protein
monomer B-oligomeric_state
being O
linked O
to O
the O
N O
- O
terminus O
of O
another O
and O
thus O
stabilizing O
the O
four B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
fold I-structure_element
within O
a O
single O
polypeptide O
chain O
( O
Figure O
6B O
). O
Linking O
the O
protein O
together O
in O
this O
way O
relaxes O
the O
requirement O
for O
the O
maintenance O
of O
a O
symmetrical O
FOC B-site
and O
thus O
provides O
a O
path O
to O
the O
diversity O
in O
active B-site
- I-site
site I-site
residues I-site
seen O
across O
the O
ferritin B-protein_type
family O
( O
Figure O
6A O
, O
residues O
Glu95 B-residue_name_number
, O
Gln128 B-residue_name_number
and O
Glu131 B-residue_name_number
in O
PmFtn B-protein
, O
Supplementary O
file O
1 O
). O
Relationship O
between O
ferritin B-protein_type
structure B-evidence
and O
activity O
The O
quaternary O
arrangement O
of O
classical B-protein_state
ferritins B-protein_type
into O
an O
octahedral B-protein_state
nanocage B-complex_assembly
and O
Dps B-protein
into O
a O
dodecamer B-oligomeric_state
is O
absolutely O
required O
for O
their O
function O
as O
iron B-chemical
storage O
compartments O
. O
The O
oxidation O
and O
mineralization O
of O
iron B-chemical
must O
be O
spatially O
separated O
from O
the O
host O
cytosol O
to O
prevent O
the O
formation O
of O
damaging O
hydroxyl O
radicals O
in O
the O
Fenton O
and O
Haber O
- O
Weiss O
reactions O
. O
This O
is O
achieved O
in O
all O
ferritins B-protein_type
by O
confining O
the O
oxidation O
of O
iron B-chemical
to O
the O
interior O
of O
the O
protein O
complex O
, O
thus O
achieving O
sequestration O
of O
the O
Fe3 B-chemical
+ I-chemical
mineralization O
product O
. O
A O
structural B-experimental_method
alignment I-experimental_method
of O
the O
FOC B-site
of O
EncFtn B-protein
with O
the O
classical B-protein_state
ferritin B-protein_type
PmFtn B-protein
shows O
that O
the O
central B-structure_element
ring I-structure_element
of O
EncFtn B-protein
corresponds O
to O
the O
external O
surface O
of O
ferritin B-protein_type
, O
while O
the O
outer O
circumference O
of O
EncFtn B-protein
is O
congruent O
with O
the O
inner O
mineralization B-site
surface I-site
of O
ferritin B-protein_type
( O
Figure O
6 O
O
figure O
supplement O
1A O
). O
This O
overlay B-experimental_method
highlights O
the O
fact O
that O
the O
ferroxidase B-site
center I-site
of O
EncFtn B-protein
faces O
in O
the O
opposite O
direction O
relative O
to O
the O
classical B-protein_state
ferritins B-protein_type
and O
is O
essentially O
inside O
out O
regarding O
iron B-chemical
storage O
space O
( O
Figure O
6 O
O
figure O
supplement O
1B O
, O
boxed O
region O
). O
Analysis O
of O
each O
of O
the O
single O
mutations B-experimental_method
( O
E32A B-mutant
, O
E62A B-mutant
and O
H65A B-mutant
) O
made O
in O
the O
FOC B-site
highlights O
the O
importance O
of O
the O
iron B-site
- I-site
coordinating I-site
residues I-site
in O
the O
catalytic O
activity O
of O
EncFtn B-protein
. O
Furthermore O
, O
the O
position O
of O
the O
calcium B-chemical
ion O
coordinated B-bond_interaction
by I-bond_interaction
Glu31 B-residue_name_number
and O
Glu34 B-residue_name_number
seen O
in O
the O
EncFtnsH B-protein
structure B-evidence
suggests O
an O
entry B-site
site I-site
to O
channel O
metal O
ions O
into O
the O
FOC B-site
; O
we O
propose O
that O
this O
site O
binds O
hydrated O
iron B-chemical
ions O
in O
vivo O
and O
acts O
as O
a O
selectivity O
filter O
and O
gate O
for O
the O
FOC B-site
. O
The O
constellation O
of O
charged O
residues O
on O
the O
outer O
circumference O
of O
EncFtn B-protein
( O
His57 B-residue_name_number
, O
Glu61 B-residue_name_number
and O
Glu64 B-residue_name_number
) O
could O
function O
in O
the O
same O
way O
as O
the O
residues O
lining O
the O
mineralization B-site
surface I-site
within O
the O
classical B-protein_state
ferritin B-protein_type
nanocage B-complex_assembly
, O
and O
given O
their O
proximity O
to O
the O
FOC B-site
these O
sites O
may O
be O
the O
exit B-site
portal I-site
and O
mineralization B-site
site I-site
. O
The O
absolute O
requirement O
for O
the O
spatial O
separation O
of O
oxidation O
and O
mineralization O
in O
ferritins B-protein_type
suggests O
that O
the O
EncFtn B-protein_type
family O
proteins O
are O
not O
capable O
of O
storing O
iron B-chemical
minerals O
due O
to O
the O
absence B-protein_state
of I-protein_state
an O
enclosed O
compartment O
in O
their O
structure O
( O
Figure O
6 O
O
figure O
supplement O
1B O
). O
Our O
biochemical B-experimental_method
characterization I-experimental_method
of O
EncFtn B-protein
supports O
this O
hypothesis O
, O
indicating O
that O
while O
this O
protein O
is O
capable O
of O
oxidizing O
iron B-chemical
, O
it O
does O
not O
accrue O
mineralized O
iron B-chemical
in O
an O
analogous O
manner O
to O
classical B-protein_state
ferritins B-protein_type
. O
While O
EncFtn B-protein
does O
not O
store O
iron B-chemical
itself O
, O
its O
association O
with O
the O
encapsulin B-protein
nanocage B-complex_assembly
suggests O
that O
mineralization O
occurs O
within O
the O
cavity B-site
of O
the O
encapsulin B-protein
shell B-structure_element
. O
Our O
ferroxidase B-experimental_method
assay I-experimental_method
data O
on O
the O
recombinant O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartments B-complex_assembly
, O
which O
accrue O
over O
4100 O
iron B-chemical
ions O
per O
complex O
and O
form O
regular O
nanoparticles B-complex_assembly
, O
are O
consistent O
with O
the O
encapsulin B-protein
protein O
acting O
as O
the O
store O
for O
iron B-chemical
oxidized O
by O
the O
EncFtn B-protein
enzyme O
. O
TEM B-experimental_method
analysis O
of O
the O
reaction O
products O
shows O
the O
production O
of O
homogeneous O
iron B-chemical
nanoparticles O
only O
in O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
( O
Figure O
8 O
O
figure O
supplement O
1 O
). O
Model O
of O
iron B-chemical
oxidation O
in O
encapsulin B-protein
nanocompartments B-complex_assembly
. O
( O
A O
) O
Model O
of O
EncFtnsH B-protein
docking B-experimental_method
to O
the O
encapsulin B-protein
shell B-structure_element
. O
A O
single O
pentamer B-oligomeric_state
of O
the O
icosahedral B-protein_state
T B-species
. I-species
maritima I-species
encapsulin B-protein
structure B-evidence
( O
PDBID O
: O
3DKT O
) O
is O
shown O
as O
a O
blue O
surface O
with O
the O
encapsulin B-protein
localization B-structure_element
sequence I-structure_element
of O
EncFtn B-protein
shown O
as O
a O
purple O
surface O
. O
The O
C O
- O
terminal O
regions O
of O
the O
EncFtn B-protein
subunits B-structure_element
correspond O
to O
the O
position O
of O
the O
localization B-structure_element
sequences I-structure_element
seen O
in O
3DKT O
. O
Alignment B-experimental_method
of O
EncFtnsH B-protein
with O
3DKT O
positions O
the O
central B-site
channel I-site
directly O
above O
the O
pore B-site
in O
the O
3DKT O
pentamer B-oligomeric_state
axis O
( O
shown O
as O
a O
grey O
pentagon O
). O
( O
B O
) O
Surface O
view O
of O
EncFtn B-protein
within O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
( O
grey O
and O
blue O
respectively O
). O
The O
lumen O
of O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
is O
considerably O
larger O
than O
the O
interior O
of O
ferritin B-protein_type
( O
shown O
in O
orange O
behind O
the O
encapsulin B-protein
for O
reference O
) O
and O
thus O
allows O
the O
storage O
of O
significantly O
more O
iron B-chemical
. O
The O
proposed O
pathway O
for O
iron B-chemical
movement O
through O
the O
encapsulin B-protein
shell B-structure_element
and O
EncFtn B-protein
FOC B-site
is O
shown O
with O
arrows O
. O
( O
C O
) O
Model O
ofiron O
oxidation O
within O
an O
encapsulin B-protein
nanocompartment B-complex_assembly
. O
As O
EncFtn B-protein
is O
unable O
to O
mineralize O
iron B-chemical
on O
its O
surface O
directly O
, O
Fe2 B-chemical
+ I-chemical
must O
pass O
through O
the O
encapsulin B-protein
shell B-structure_element
to O
access O
the O
first O
metal B-site
binding I-site
site I-site
within O
the O
central B-site
channel I-site
of O
EncFtnsH B-protein
( O
entry B-site
site I-site
) O
prior O
to O
oxidation O
within O
the O
FOC B-site
and O
release O
as O
Fe3 B-chemical
+ I-chemical
to O
the O
outer O
surface O
of O
the O
protein O
where O
it O
can O
be O
mineralized O
within O
the O
lumen O
of O
the O
encapsulin B-protein
cage O
. O
Docking B-experimental_method
the O
decamer B-oligomeric_state
structure B-evidence
of O
EncFtnsH B-protein
into O
the O
pentamer B-oligomeric_state
of O
the O
T B-species
. I-species
maritima I-species
encapsulin B-protein
Tmari_0786 B-gene
( O
PDB O
ID O
: O
3DKT O
) O
shows O
that O
the O
position O
of O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
extensions I-structure_element
of O
our O
EncFtnsH B-protein
structure B-evidence
are O
consistent O
with O
the O
localization B-structure_element
sequences I-structure_element
seen O
bound B-protein_state
to I-protein_state
the O
encapsulin B-protein
protein O
( O
Figure O
14A O
). O
Thus O
, O
it O
appears O
that O
the O
EncFtn B-protein
decamer B-oligomeric_state
is O
the O
physiological O
state O
of O
this O
protein O
. O
This O
arrangement O
positions O
the O
central B-structure_element
ring I-structure_element
of O
EncFtn B-protein
directly O
above O
the O
pore B-site
at O
the O
five O
- O
fold O
symmetry O
axis O
of O
the O
encapsulin B-protein
shell B-structure_element
and O
highlights O
a O
potential O
route O
for O
the O
entry O
of O
iron B-chemical
into O
the O
encapsulin B-protein
and O
towards O
the O
active B-site
site I-site
of O
EncFtn B-protein
. O
A O
comparison O
of O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
and O
the O
ferritin B-protein_type
nanocage B-complex_assembly
highlights O
the O
size O
differential O
between O
the O
two O
complexes O
( O
Figure O
14B O
) O
that O
allows O
the O
encapsulin B-protein
to O
store O
significantly O
more O
iron B-chemical
. O
The O
presence B-protein_state
of I-protein_state
five O
FOCs B-site
per O
EncFtnsH B-protein
decamer B-oligomeric_state
and O
the O
fact O
that O
the O
icosahedral B-protein_state
encapsulin B-protein
nanocage B-complex_assembly
can O
hold O
up O
to O
twelve O
of O
decameric B-oligomeric_state
EncFtn B-protein
between O
each O
of O
the O
internal O
five O
- O
fold O
vertices O
means O
that O
they O
can O
achieve O
a O
high O
rate O
of O
iron B-chemical
mineralization O
across O
the O
entire O
nanocompartment B-complex_assembly
. O
This O
arrangement O
of O
multiple O
reaction O
centers O
in O
a O
single O
protein O
assembly O
is O
reminiscent O
of O
classical B-protein_state
ferritins B-protein_type
, O
which O
has O
24 O
FOCs B-site
distributed O
around O
the O
nanocage B-complex_assembly
. O
Our O
structural B-evidence
data I-evidence
, O
coupled O
with O
biochemical B-experimental_method
and I-experimental_method
ICP I-experimental_method
- I-experimental_method
MS I-experimental_method
analysis O
, O
suggest O
a O
model O
for O
the O
activity O
of O
the O
encapsulin B-protein
iron B-complex_assembly
- I-complex_assembly
megastore I-complex_assembly
( O
Figure O
14C O
). O
The O
crystal B-evidence
structure I-evidence
of O
the O
T B-species
. I-species
maritima I-species
encapsulin B-protein
shell B-structure_element
protein O
has O
a O
negatively B-site
charged I-site
pore I-site
positioned O
to O
allow O
the O
passage O
of O
Fe2 B-chemical
+ I-chemical
into O
the O
encapsulin B-protein
and O
directs O
the O
metal O
towards O
the O
central O
, O
negatively B-site
charged I-site
hole I-site
of O
the O
EncFtn B-protein
ring B-structure_element
( O
Figure O
4 O
O
figure O
supplement O
1 O
). O
The O
five O
metal B-site
- I-site
binding I-site
sites I-site
on O
the O
interior O
of O
the O
ring B-structure_element
( O
Glu31 B-site
/ I-site
34 I-site
- I-site
sites I-site
) O
may O
select O
for O
the O
Fe2 B-chemical
+ I-chemical
ion O
and O
direct O
it O
towards O
their O
cognate O
FOCs B-site
. O
We O
propose O
that O
the O
oxidation O
of O
Fe2 B-chemical
+ I-chemical
to O
Fe3 B-chemical
+ I-chemical
occurs O
within O
the O
FOC B-site
according O
to O
the O
model O
postulated O
by O
in O
which O
the O
FOC B-site
acts O
as O
a O
substrate B-site
site I-site
through O
which O
iron B-chemical
passes O
and O
is O
released O
on O
to O
weakly B-site
coordinating I-site
sites I-site
at O
the O
outer O
circumference O
of O
the O
protein O
( O
His57 B-residue_name_number
, O
Glu61 B-residue_name_number
and O
Glu64 B-residue_name_number
), O
where O
it O
is O
able O
to O
form O
ferrihydrite B-chemical
minerals O
which O
can O
be O
safely O
deposited O
within O
the O
lumen O
of O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
( O
Figure O
14 O
). O
Here O
we O
describe O
for O
the O
first O
time O
the O
structure B-evidence
and O
biochemistry O
of O
a O
new O
class O
of O
encapsulin B-protein_type
- I-protein_type
associated I-protein_type
ferritin I-protein_type
- I-protein_type
like I-protein_type
protein I-protein_type
and O
demonstrate O
that O
it O
has O
an O
absolute O
requirement O
for O
compartmentalization O
within O
an O
encapsulin B-protein
nanocage B-complex_assembly
to O
act O
as O
an O
iron B-chemical
store O
. O
Further O
work O
on O
the O
EncFtn B-complex_assembly
- I-complex_assembly
Enc I-complex_assembly
nanocompartment B-complex_assembly
will O
establish O
the O
structural O
basis O
for O
the O
movement O
of O
iron B-chemical
through O
the O
encapsulin B-protein
shell B-structure_element
, O
the O
mechanism O
of O
iron B-chemical
oxidation O
by O
the O
EncFtn B-protein
FOC B-site
and O
its O
subsequent O
storage O
in O
the O
lumen O
of O
the O
encapsulin B-protein
nanocompartment B-complex_assembly
. O