# 外部から簡単にupscalerを呼ぶためのスクリプト # 単体で動くようにモデル定義も含めている import argparse import glob import os import cv2 from diffusers import AutoencoderKL from typing import Dict, List import numpy as np import torch from library.device_utils import init_ipex, get_preferred_device init_ipex() from torch import nn from tqdm import tqdm from PIL import Image from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=1): super(ResidualBlock, self).__init__() if out_channels is None: out_channels = in_channels self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.relu2 = nn.ReLU(inplace=True) # このReLUはresidualに足す前にかけるほうがいいかも # initialize weights self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu2(out) return out class Upscaler(nn.Module): def __init__(self): super(Upscaler, self).__init__() # define layers # latent has 4 channels self.conv1 = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn1 = nn.BatchNorm2d(128) self.relu1 = nn.ReLU(inplace=True) # resblocks # 数の暴力で20個:次元数を増やすよりもブロックを増やしたほうがreceptive fieldが広がるはずだぞ self.resblock1 = ResidualBlock(128) self.resblock2 = ResidualBlock(128) self.resblock3 = ResidualBlock(128) self.resblock4 = ResidualBlock(128) self.resblock5 = ResidualBlock(128) self.resblock6 = ResidualBlock(128) self.resblock7 = ResidualBlock(128) self.resblock8 = ResidualBlock(128) self.resblock9 = ResidualBlock(128) self.resblock10 = ResidualBlock(128) self.resblock11 = ResidualBlock(128) self.resblock12 = ResidualBlock(128) self.resblock13 = ResidualBlock(128) self.resblock14 = ResidualBlock(128) self.resblock15 = ResidualBlock(128) self.resblock16 = ResidualBlock(128) self.resblock17 = ResidualBlock(128) self.resblock18 = ResidualBlock(128) self.resblock19 = ResidualBlock(128) self.resblock20 = ResidualBlock(128) # last convs self.conv2 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn3 = nn.BatchNorm2d(64) self.relu3 = nn.ReLU(inplace=True) # final conv: output 4 channels self.conv_final = nn.Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)) # initialize weights self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) # initialize final conv weights to 0: 流行りのzero conv nn.init.constant_(self.conv_final.weight, 0) def forward(self, x): inp = x x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) # いくつかのresblockを通した後に、residualを足すことで精度向上と学習速度向上が見込めるはず residual = x x = self.resblock1(x) x = self.resblock2(x) x = self.resblock3(x) x = self.resblock4(x) x = x + residual residual = x x = self.resblock5(x) x = self.resblock6(x) x = self.resblock7(x) x = self.resblock8(x) x = x + residual residual = x x = self.resblock9(x) x = self.resblock10(x) x = self.resblock11(x) x = self.resblock12(x) x = x + residual residual = x x = self.resblock13(x) x = self.resblock14(x) x = self.resblock15(x) x = self.resblock16(x) x = x + residual residual = x x = self.resblock17(x) x = self.resblock18(x) x = self.resblock19(x) x = self.resblock20(x) x = x + residual x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) # ここにreluを入れないほうがいい気がする x = self.conv_final(x) # network estimates the difference between the input and the output x = x + inp return x def support_latents(self) -> bool: return False def upscale( self, vae: AutoencoderKL, lowreso_images: List[Image.Image], lowreso_latents: torch.Tensor, dtype: torch.dtype, width: int, height: int, batch_size: int = 1, vae_batch_size: int = 1, ): # assertion assert lowreso_images is not None, "Upscaler requires lowreso image" # make upsampled image with lanczos4 upsampled_images = [] for lowreso_image in lowreso_images: upsampled_image = np.array(lowreso_image.resize((width, height), Image.LANCZOS)) upsampled_images.append(upsampled_image) # convert to tensor: this tensor is too large to be converted to cuda upsampled_images = [torch.from_numpy(upsampled_image).permute(2, 0, 1).float() for upsampled_image in upsampled_images] upsampled_images = torch.stack(upsampled_images, dim=0) upsampled_images = upsampled_images.to(dtype) # normalize to [-1, 1] upsampled_images = upsampled_images / 127.5 - 1.0 # convert upsample images to latents with batch size # logger.info("Encoding upsampled (LANCZOS4) images...") upsampled_latents = [] for i in tqdm(range(0, upsampled_images.shape[0], vae_batch_size)): batch = upsampled_images[i : i + vae_batch_size].to(vae.device) with torch.no_grad(): batch = vae.encode(batch).latent_dist.sample() upsampled_latents.append(batch) upsampled_latents = torch.cat(upsampled_latents, dim=0) # upscale (refine) latents with this model with batch size logger.info("Upscaling latents...") upscaled_latents = [] for i in range(0, upsampled_latents.shape[0], batch_size): with torch.no_grad(): upscaled_latents.append(self.forward(upsampled_latents[i : i + batch_size])) upscaled_latents = torch.cat(upscaled_latents, dim=0) return upscaled_latents * 0.18215 # external interface: returns a model def create_upscaler(**kwargs): weights = kwargs["weights"] model = Upscaler() logger.info(f"Loading weights from {weights}...") if os.path.splitext(weights)[1] == ".safetensors": from safetensors.torch import load_file sd = load_file(weights) else: sd = torch.load(weights, map_location=torch.device("cpu")) model.load_state_dict(sd) return model # another interface: upscale images with a model for given images from command line def upscale_images(args: argparse.Namespace): DEVICE = get_preferred_device() us_dtype = torch.float16 # TODO: support fp32/bf16 os.makedirs(args.output_dir, exist_ok=True) # load VAE with Diffusers assert args.vae_path is not None, "VAE path is required" logger.info(f"Loading VAE from {args.vae_path}...") vae = AutoencoderKL.from_pretrained(args.vae_path, subfolder="vae") vae.to(DEVICE, dtype=us_dtype) # prepare model logger.info("Preparing model...") upscaler: Upscaler = create_upscaler(weights=args.weights) # logger.info("Loading weights from", args.weights) # upscaler.load_state_dict(torch.load(args.weights)) upscaler.eval() upscaler.to(DEVICE, dtype=us_dtype) # load images image_paths = glob.glob(args.image_pattern) images = [] for image_path in image_paths: image = Image.open(image_path) image = image.convert("RGB") # make divisible by 8 width = image.width height = image.height if width % 8 != 0: width = width - (width % 8) if height % 8 != 0: height = height - (height % 8) if width != image.width or height != image.height: image = image.crop((0, 0, width, height)) images.append(image) # debug output if args.debug: for image, image_path in zip(images, image_paths): image_debug = image.resize((image.width * 2, image.height * 2), Image.LANCZOS) basename = os.path.basename(image_path) basename_wo_ext, ext = os.path.splitext(basename) dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_lanczos4{ext}") image_debug.save(dest_file_name) # upscale logger.info("Upscaling...") upscaled_latents = upscaler.upscale( vae, images, None, us_dtype, width * 2, height * 2, batch_size=args.batch_size, vae_batch_size=args.vae_batch_size ) upscaled_latents /= 0.18215 # decode with batch logger.info("Decoding...") upscaled_images = [] for i in tqdm(range(0, upscaled_latents.shape[0], args.vae_batch_size)): with torch.no_grad(): batch = vae.decode(upscaled_latents[i : i + args.vae_batch_size]).sample batch = batch.to("cpu") upscaled_images.append(batch) upscaled_images = torch.cat(upscaled_images, dim=0) # tensor to numpy upscaled_images = upscaled_images.permute(0, 2, 3, 1).numpy() upscaled_images = (upscaled_images + 1.0) * 127.5 upscaled_images = upscaled_images.clip(0, 255).astype(np.uint8) upscaled_images = upscaled_images[..., ::-1] # save images for i, image in enumerate(upscaled_images): basename = os.path.basename(image_paths[i]) basename_wo_ext, ext = os.path.splitext(basename) dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_upscaled{ext}") cv2.imwrite(dest_file_name, image) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--vae_path", type=str, default=None, help="VAE path") parser.add_argument("--weights", type=str, default=None, help="Weights path") parser.add_argument("--image_pattern", type=str, default=None, help="Image pattern") parser.add_argument("--output_dir", type=str, default=".", help="Output directory") parser.add_argument("--batch_size", type=int, default=4, help="Batch size") parser.add_argument("--vae_batch_size", type=int, default=1, help="VAE batch size") parser.add_argument("--debug", action="store_true", help="Debug mode") args = parser.parse_args() upscale_images(args)